Subalgebra \(A^{4}_1\) ↪ \(C^{1}_5\)
4 out of 119
Computations done by the calculator project.

Subalgebra type: \(\displaystyle A^{4}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle 2A^{4}_1+A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{4}_1\)
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{4}_1+A^{1}_1\) , \(\displaystyle 2A^{4}_1\) , \(\displaystyle A^{5}_1+A^{4}_1\) , \(\displaystyle A^{8}_1+A^{4}_1\) , \(\displaystyle A^{9}_1+A^{4}_1\) , \(\displaystyle 2A^{4}_1+A^{1}_1\) , \(\displaystyle 3A^{4}_1\) , \(\displaystyle A^{5}_1+2A^{4}_1\) , \(\displaystyle A^{8}_1+A^{4}_1+A^{1}_1\) , \(\displaystyle 3A^{4}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{4}_1\): (2, 4, 6, 8, 4): 8
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-16}+g_{-24}\)
Positive simple generators: \(\displaystyle g_{24}+g_{16}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 10V_{2\omega_{1}}\oplus 8V_{\omega_{1}}\oplus 9V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi_{3}}\oplus V_{\omega_{1}+\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}+2\psi_{3}}\oplus V_{2\omega_{1}+2\psi_{2}}
\oplus V_{2\omega_{1}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}+2\psi_{3}}\oplus V_{\omega_{1}-\psi_{2}+2\psi_{3}}
\oplus V_{\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}-\psi_{1}+\psi_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\psi_{1}-\psi_{2}}
\oplus V_{-\psi_{1}+\psi_{2}}\oplus 3V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\psi_{1}-\psi_{2}}\oplus V_{2\omega_{1}-\psi_{1}-\psi_{2}}
\oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{3}}\oplus V_{-\psi_{1}-\psi_{2}}
\oplus V_{\omega_{1}-\psi_{1}-2\psi_{3}}\oplus V_{\omega_{1}-\psi_{2}-2\psi_{3}}\oplus V_{-4\psi_{3}}\)
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 27) ; the vectors are over the primal subalgebra.\(g_{-5}\)\(-g_{2}+g_{-10}\)\(-g_{6}+g_{-7}\)\(h_{1}\)\(h_{3}\)\(h_{5}\)\(-g_{7}+g_{-6}\)\(-g_{10}+g_{-2}\)\(g_{5}\)\(g_{4}\)\(g_{11}\)\(g_{14}\)\(g_{8}\)\(g_{9}\)\(g_{15}\)\(g_{17}\)\(g_{12}\)\(g_{13}\)\(g_{18}\)\(g_{23}\)\(g_{20}\)\(g_{24}\)\(g_{16}\)\(g_{21}\)\(g_{25}\)\(g_{22}\)\(g_{19}\)
weight\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)
weights rel. to Cartan of (centralizer+semisimple s.a.). \(-4\psi_{3}\)\(-\psi_{1}-\psi_{2}\)\(\psi_{1}-\psi_{2}\)\(0\)\(0\)\(0\)\(-\psi_{1}+\psi_{2}\)\(\psi_{1}+\psi_{2}\)\(4\psi_{3}\)\(\omega_{1}-\psi_{2}-2\psi_{3}\)\(\omega_{1}-\psi_{1}-2\psi_{3}\)\(\omega_{1}+\psi_{1}-2\psi_{3}\)\(\omega_{1}+\psi_{2}-2\psi_{3}\)\(\omega_{1}-\psi_{2}+2\psi_{3}\)\(\omega_{1}-\psi_{1}+2\psi_{3}\)\(\omega_{1}+\psi_{1}+2\psi_{3}\)\(\omega_{1}+\psi_{2}+2\psi_{3}\)\(2\omega_{1}-2\psi_{2}\)\(2\omega_{1}-\psi_{1}-\psi_{2}\)\(2\omega_{1}-2\psi_{1}\)\(2\omega_{1}+\psi_{1}-\psi_{2}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}-\psi_{1}+\psi_{2}\)\(2\omega_{1}+2\psi_{1}\)\(2\omega_{1}+\psi_{1}+\psi_{2}\)\(2\omega_{1}+2\psi_{2}\)
Isotypic module decomposition over primal subalgebra (total 25 isotypic components).
Isotypical components + highest weight\(\displaystyle V_{-4\psi_{3}} \) → (0, 0, 0, -4)\(\displaystyle V_{-\psi_{1}-\psi_{2}} \) → (0, -1, -1, 0)\(\displaystyle V_{\psi_{1}-\psi_{2}} \) → (0, 1, -1, 0)\(\displaystyle V_{0} \) → (0, 0, 0, 0)\(\displaystyle V_{-\psi_{1}+\psi_{2}} \) → (0, -1, 1, 0)\(\displaystyle V_{\psi_{1}+\psi_{2}} \) → (0, 1, 1, 0)\(\displaystyle V_{4\psi_{3}} \) → (0, 0, 0, 4)\(\displaystyle V_{\omega_{1}-\psi_{2}-2\psi_{3}} \) → (1, 0, -1, -2)\(\displaystyle V_{\omega_{1}-\psi_{1}-2\psi_{3}} \) → (1, -1, 0, -2)\(\displaystyle V_{\omega_{1}+\psi_{1}-2\psi_{3}} \) → (1, 1, 0, -2)\(\displaystyle V_{\omega_{1}+\psi_{2}-2\psi_{3}} \) → (1, 0, 1, -2)\(\displaystyle V_{\omega_{1}-\psi_{2}+2\psi_{3}} \) → (1, 0, -1, 2)\(\displaystyle V_{\omega_{1}-\psi_{1}+2\psi_{3}} \) → (1, -1, 0, 2)\(\displaystyle V_{\omega_{1}+\psi_{1}+2\psi_{3}} \) → (1, 1, 0, 2)\(\displaystyle V_{\omega_{1}+\psi_{2}+2\psi_{3}} \) → (1, 0, 1, 2)\(\displaystyle V_{2\omega_{1}-2\psi_{2}} \) → (2, 0, -2, 0)\(\displaystyle V_{2\omega_{1}-\psi_{1}-\psi_{2}} \) → (2, -1, -1, 0)\(\displaystyle V_{2\omega_{1}-2\psi_{1}} \) → (2, -2, 0, 0)\(\displaystyle V_{2\omega_{1}+\psi_{1}-\psi_{2}} \) → (2, 1, -1, 0)\(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0)\(\displaystyle V_{2\omega_{1}-\psi_{1}+\psi_{2}} \) → (2, -1, 1, 0)\(\displaystyle V_{2\omega_{1}+2\psi_{1}} \) → (2, 2, 0, 0)\(\displaystyle V_{2\omega_{1}+\psi_{1}+\psi_{2}} \) → (2, 1, 1, 0)\(\displaystyle V_{2\omega_{1}+2\psi_{2}} \) → (2, 0, 2, 0)
Module label \(W_{1}\)\(W_{2}\)\(W_{3}\)\(W_{4}\)\(W_{5}\)\(W_{6}\)\(W_{7}\)\(W_{8}\)\(W_{9}\)\(W_{10}\)\(W_{11}\)\(W_{12}\)\(W_{13}\)\(W_{14}\)\(W_{15}\)\(W_{16}\)\(W_{17}\)\(W_{18}\)\(W_{19}\)\(W_{20}\)\(W_{21}\)\(W_{22}\)\(W_{23}\)\(W_{24}\)\(W_{25}\)
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
\(g_{-5}\)
\(-g_{2}+g_{-10}\)
\(-g_{6}+g_{-7}\)
Cartan of centralizer component.
\(h_{1}\)
\(h_{3}\)
\(h_{5}\)
\(-g_{7}+g_{-6}\)
\(-g_{10}+g_{-2}\)
\(g_{5}\)
\(g_{4}\)
\(g_{-12}\)
\(g_{11}\)
\(g_{-17}\)
\(g_{14}\)
\(g_{-15}\)
\(g_{8}\)
\(g_{-9}\)
\(g_{9}\)
\(-g_{-8}\)
\(g_{15}\)
\(-g_{-14}\)
\(g_{17}\)
\(-g_{-11}\)
\(g_{12}\)
\(-g_{-4}\)
\(g_{13}\)
\(-g_{-3}\)
\(-2g_{-19}\)
\(g_{18}\)
\(-g_{2}-g_{-10}\)
\(-2g_{-22}\)
\(g_{23}\)
\(-g_{-1}\)
\(-2g_{-25}\)
\(g_{20}\)
\(-g_{6}-g_{-7}\)
\(-2g_{-21}\)
Semisimple subalgebra component.
\(-g_{24}-g_{16}\)
\(4h_{5}+8h_{4}+6h_{3}+4h_{2}+2h_{1}\)
\(2g_{-16}+2g_{-24}\)
\(g_{24}\)
\(-2h_{5}-4h_{4}-4h_{3}-4h_{2}-2h_{1}\)
\(-2g_{-24}\)
\(g_{21}\)
\(-g_{7}-g_{-6}\)
\(-2g_{-20}\)
\(g_{25}\)
\(-g_{1}\)
\(-2g_{-23}\)
\(g_{22}\)
\(-g_{10}-g_{-2}\)
\(-2g_{-18}\)
\(g_{19}\)
\(-g_{3}\)
\(-2g_{-13}\)
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(0\)\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer\(-4\psi_{3}\)\(-\psi_{1}-\psi_{2}\)\(\psi_{1}-\psi_{2}\)\(0\)\(-\psi_{1}+\psi_{2}\)\(\psi_{1}+\psi_{2}\)\(4\psi_{3}\)\(\omega_{1}-\psi_{2}-2\psi_{3}\)
\(-\omega_{1}-\psi_{2}-2\psi_{3}\)
\(\omega_{1}-\psi_{1}-2\psi_{3}\)
\(-\omega_{1}-\psi_{1}-2\psi_{3}\)
\(\omega_{1}+\psi_{1}-2\psi_{3}\)
\(-\omega_{1}+\psi_{1}-2\psi_{3}\)
\(\omega_{1}+\psi_{2}-2\psi_{3}\)
\(-\omega_{1}+\psi_{2}-2\psi_{3}\)
\(\omega_{1}-\psi_{2}+2\psi_{3}\)
\(-\omega_{1}-\psi_{2}+2\psi_{3}\)
\(\omega_{1}-\psi_{1}+2\psi_{3}\)
\(-\omega_{1}-\psi_{1}+2\psi_{3}\)
\(\omega_{1}+\psi_{1}+2\psi_{3}\)
\(-\omega_{1}+\psi_{1}+2\psi_{3}\)
\(\omega_{1}+\psi_{2}+2\psi_{3}\)
\(-\omega_{1}+\psi_{2}+2\psi_{3}\)
\(2\omega_{1}-2\psi_{2}\)
\(-2\psi_{2}\)
\(-2\omega_{1}-2\psi_{2}\)
\(2\omega_{1}-\psi_{1}-\psi_{2}\)
\(-\psi_{1}-\psi_{2}\)
\(-2\omega_{1}-\psi_{1}-\psi_{2}\)
\(2\omega_{1}-2\psi_{1}\)
\(-2\psi_{1}\)
\(-2\omega_{1}-2\psi_{1}\)
\(2\omega_{1}+\psi_{1}-\psi_{2}\)
\(\psi_{1}-\psi_{2}\)
\(-2\omega_{1}+\psi_{1}-\psi_{2}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}-\psi_{1}+\psi_{2}\)
\(-\psi_{1}+\psi_{2}\)
\(-2\omega_{1}-\psi_{1}+\psi_{2}\)
\(2\omega_{1}+2\psi_{1}\)
\(2\psi_{1}\)
\(-2\omega_{1}+2\psi_{1}\)
\(2\omega_{1}+\psi_{1}+\psi_{2}\)
\(\psi_{1}+\psi_{2}\)
\(-2\omega_{1}+\psi_{1}+\psi_{2}\)
\(2\omega_{1}+2\psi_{2}\)
\(2\psi_{2}\)
\(-2\omega_{1}+2\psi_{2}\)
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.\(\displaystyle M_{-4\psi_{3}}\)\(\displaystyle M_{-\psi_{1}-\psi_{2}}\)\(\displaystyle M_{\psi_{1}-\psi_{2}}\)\(\displaystyle M_{0}\)\(\displaystyle M_{-\psi_{1}+\psi_{2}}\)\(\displaystyle M_{\psi_{1}+\psi_{2}}\)\(\displaystyle M_{4\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\)\(\displaystyle M_{2\omega_{1}-\psi_{1}-\psi_{2}}\oplus M_{-\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}-\psi_{2}}\)\(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\)\(\displaystyle M_{2\omega_{1}+\psi_{1}-\psi_{2}}\oplus M_{\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}-\psi_{2}}\)\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{2\omega_{1}-\psi_{1}+\psi_{2}}\oplus M_{-\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}+\psi_{2}}\)\(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\)\(\displaystyle M_{2\omega_{1}+\psi_{1}+\psi_{2}}\oplus M_{\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}+\psi_{2}}\)\(\displaystyle M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\)
Isotypic character\(\displaystyle M_{-4\psi_{3}}\)\(\displaystyle M_{-\psi_{1}-\psi_{2}}\)\(\displaystyle M_{\psi_{1}-\psi_{2}}\)\(\displaystyle 3M_{0}\)\(\displaystyle M_{-\psi_{1}+\psi_{2}}\)\(\displaystyle M_{\psi_{1}+\psi_{2}}\)\(\displaystyle M_{4\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\)\(\displaystyle M_{2\omega_{1}-\psi_{1}-\psi_{2}}\oplus M_{-\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}-\psi_{2}}\)\(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\)\(\displaystyle M_{2\omega_{1}+\psi_{1}-\psi_{2}}\oplus M_{\psi_{1}-\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}-\psi_{2}}\)\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{2\omega_{1}-\psi_{1}+\psi_{2}}\oplus M_{-\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}-\psi_{1}+\psi_{2}}\)\(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\)\(\displaystyle M_{2\omega_{1}+\psi_{1}+\psi_{2}}\oplus M_{\psi_{1}+\psi_{2}}\oplus M_{-2\omega_{1}+\psi_{1}+\psi_{2}}\)\(\displaystyle M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\)

Semisimple subalgebra: W_{20}
Centralizer extension: W_{1}+W_{2}+W_{3}+W_{4}+W_{5}+W_{6}+W_{7}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported



Made total 2345117399 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
1*2 (unknown) gens:
(
x_{1} g_{-13}+x_{2} g_{-16}+x_{3} g_{-18}+x_{4} g_{-19}+x_{5} g_{-20}+x_{6} g_{-21}+x_{7} g_{-22}+x_{8} g_{-23} \\ +x_{9} g_{-24}+x_{10} g_{-25}, x_{20} g_{25}+x_{19} g_{24}+x_{18} g_{23}+x_{17} g_{22}+x_{16} g_{21}+x_{15} g_{20}+x_{14} g_{19}+x_{13} g_{18} \\ +x_{12} g_{16}+x_{11} g_{13})

Unknown splitting cartan of centralizer.
x_{25} h_{5}+x_{24} h_{4}+x_{23} h_{3}+x_{22} h_{2}+x_{21} h_{1}, x_{30} h_{5}+x_{29} h_{4}+x_{28} h_{3}+x_{27} h_{2}+x_{26} h_{1}, x_{35} h_{5}+x_{34} h_{4}+x_{33} h_{3}+x_{32} h_{2}+x_{31} h_{1}
h: (2, 4, 6, 8, 4), e = combination of g_{13} g_{16} g_{18} g_{19} g_{20} g_{21} g_{22} g_{23} g_{24} g_{25} , f= combination of g_{-13} g_{-16} g_{-18} g_{-19} g_{-20} g_{-21} g_{-22} g_{-23} g_{-24} g_{-25} Positive weight subsystem: 1 vectors: (1)
Symmetric Cartan default scale: \begin{pmatrix}
2\\
\end{pmatrix}Character ambient Lie algebra: 10V_{2\omega_{1}}+8V_{\omega_{1}}+19V_{0}+8V_{-\omega_{1}}+10V_{-2\omega_{1}}
A necessary system to realize the candidate subalgebra.
1/2x_{23}^{2}x_{29}^{2}x_{35}^{2}x_{36} -x_{22} x_{23} x_{29}^{2}x_{35}^{2}x_{36} +x_{22}^{2}x_{29}^{2}x_{35}^{2}x_{36}
-x_{21} x_{22} x_{29}^{2}x_{35}^{2}x_{36} +x_{21}^{2}x_{29}^{2}x_{35}^{2}x_{36} -x_{23} x_{24} x_{28} x_{29} x_{35}^{2}x_{36}
+x_{22} x_{24} x_{28} x_{29} x_{35}^{2}x_{36} +x_{22} x_{23} x_{28} x_{29} x_{35}^{2}x_{36} -2x_{22}^{2}x_{28} x_{29} x_{35}^{2}x_{36}
+2x_{21} x_{22} x_{28} x_{29} x_{35}^{2}x_{36} -2x_{21}^{2}x_{28} x_{29} x_{35}^{2}x_{36} +x_{23} x_{24} x_{27} x_{29} x_{35}^{2}x_{36}
-2x_{22} x_{24} x_{27} x_{29} x_{35}^{2}x_{36} +x_{21} x_{24} x_{27} x_{29} x_{35}^{2}x_{36} -x_{23}^{2}x_{27} x_{29} x_{35}^{2}x_{36}
+2x_{22} x_{23} x_{27} x_{29} x_{35}^{2}x_{36} -x_{21} x_{23} x_{27} x_{29} x_{35}^{2}x_{36} +x_{22} x_{24} x_{26} x_{29} x_{35}^{2}x_{36}
-2x_{21} x_{24} x_{26} x_{29} x_{35}^{2}x_{36} -x_{22} x_{23} x_{26} x_{29} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{26} x_{29} x_{35}^{2}x_{36}
+1/2x_{24}^{2}x_{28}^{2}x_{35}^{2}x_{36} -x_{22} x_{24} x_{28}^{2}x_{35}^{2}x_{36} +3/2x_{22}^{2}x_{28}^{2}x_{35}^{2}x_{36}
-2x_{21} x_{22} x_{28}^{2}x_{35}^{2}x_{36} +2x_{21}^{2}x_{28}^{2}x_{35}^{2}x_{36} -x_{24}^{2}x_{27} x_{28} x_{35}^{2}x_{36}
+x_{23} x_{24} x_{27} x_{28} x_{35}^{2}x_{36} +2x_{22} x_{24} x_{27} x_{28} x_{35}^{2}x_{36} -x_{21} x_{24} x_{27} x_{28} x_{35}^{2}x_{36}
-3x_{22} x_{23} x_{27} x_{28} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{27} x_{28} x_{35}^{2}x_{36} +x_{21} x_{22} x_{27} x_{28} x_{35}^{2}x_{36}
-2x_{21}^{2}x_{27} x_{28} x_{35}^{2}x_{36} -x_{22} x_{24} x_{26} x_{28} x_{35}^{2}x_{36} +2x_{21} x_{24} x_{26} x_{28} x_{35}^{2}x_{36}
+2x_{22} x_{23} x_{26} x_{28} x_{35}^{2}x_{36} -4x_{21} x_{23} x_{26} x_{28} x_{35}^{2}x_{36} -x_{22}^{2}x_{26} x_{28} x_{35}^{2}x_{36}
+2x_{21} x_{22} x_{26} x_{28} x_{35}^{2}x_{36} +x_{24}^{2}x_{27}^{2}x_{35}^{2}x_{36} -2x_{23} x_{24} x_{27}^{2}x_{35}^{2}x_{36}
+3/2x_{23}^{2}x_{27}^{2}x_{35}^{2}x_{36} -x_{21} x_{23} x_{27}^{2}x_{35}^{2}x_{36} +3/2x_{21}^{2}x_{27}^{2}x_{35}^{2}x_{36}
-x_{24}^{2}x_{26} x_{27} x_{35}^{2}x_{36} +2x_{23} x_{24} x_{26} x_{27} x_{35}^{2}x_{36} -2x_{23}^{2}x_{26} x_{27} x_{35}^{2}x_{36}
+x_{22} x_{23} x_{26} x_{27} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{26} x_{27} x_{35}^{2}x_{36} -3x_{21} x_{22} x_{26} x_{27} x_{35}^{2}x_{36}
+x_{24}^{2}x_{26}^{2}x_{35}^{2}x_{36} -2x_{23} x_{24} x_{26}^{2}x_{35}^{2}x_{36} +2x_{23}^{2}x_{26}^{2}x_{35}^{2}x_{36}
-2x_{22} x_{23} x_{26}^{2}x_{35}^{2}x_{36} +3/2x_{22}^{2}x_{26}^{2}x_{35}^{2}x_{36} -x_{23}^{2}x_{29} x_{30} x_{34} x_{35} x_{36}
+2x_{22} x_{23} x_{29} x_{30} x_{34} x_{35} x_{36} -2x_{22}^{2}x_{29} x_{30} x_{34} x_{35} x_{36} +2x_{21} x_{22} x_{29} x_{30} x_{34} x_{35} x_{36}
-2x_{21}^{2}x_{29} x_{30} x_{34} x_{35} x_{36} +x_{23} x_{24} x_{28} x_{30} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{28} x_{30} x_{34} x_{35} x_{36}
-x_{22} x_{23} x_{28} x_{30} x_{34} x_{35} x_{36} +2x_{22}^{2}x_{28} x_{30} x_{34} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{34} x_{35} x_{36}
+2x_{21}^{2}x_{28} x_{30} x_{34} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36} +2x_{22} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36}
-x_{21} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36} +x_{23}^{2}x_{27} x_{30} x_{34} x_{35} x_{36} -2x_{22} x_{23} x_{27} x_{30} x_{34} x_{35} x_{36}
+x_{21} x_{23} x_{27} x_{30} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{26} x_{30} x_{34} x_{35} x_{36} +2x_{21} x_{24} x_{26} x_{30} x_{34} x_{35} x_{36}
+x_{22} x_{23} x_{26} x_{30} x_{34} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{34} x_{35} x_{36}
+x_{23} x_{25} x_{28} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{25} x_{28} x_{29} x_{34} x_{35} x_{36} -1/2x_{22} x_{23} x_{28} x_{29} x_{34} x_{35} x_{36}
+x_{22}^{2}x_{28} x_{29} x_{34} x_{35} x_{36} -x_{21} x_{22} x_{28} x_{29} x_{34} x_{35} x_{36} +x_{21}^{2}x_{28} x_{29} x_{34} x_{35} x_{36}
-x_{23} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36} +2x_{22} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36}
-x_{21} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36} +1/2x_{23}^{2}x_{27} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{23} x_{27} x_{29} x_{34} x_{35} x_{36}
+1/2x_{21} x_{23} x_{27} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{25} x_{26} x_{29} x_{34} x_{35} x_{36}
+2x_{21} x_{25} x_{26} x_{29} x_{34} x_{35} x_{36} +1/2x_{22} x_{23} x_{26} x_{29} x_{34} x_{35} x_{36}
-x_{21} x_{23} x_{26} x_{29} x_{34} x_{35} x_{36} -x_{24} x_{25} x_{28}^{2}x_{34} x_{35} x_{36} +x_{22} x_{25} x_{28}^{2}x_{34} x_{35} x_{36}
+1/2x_{22} x_{24} x_{28}^{2}x_{34} x_{35} x_{36} -3/2x_{22}^{2}x_{28}^{2}x_{34} x_{35} x_{36} +2x_{21} x_{22} x_{28}^{2}x_{34} x_{35} x_{36}
-2x_{21}^{2}x_{28}^{2}x_{34} x_{35} x_{36} +2x_{24} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{23} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36}
-2x_{22} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} +x_{21} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36}
-1/2x_{23} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36}
+1/2x_{21} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36} +3x_{22} x_{23} x_{27} x_{28} x_{34} x_{35} x_{36}
-2x_{21} x_{23} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{21} x_{22} x_{27} x_{28} x_{34} x_{35} x_{36}
+2x_{21}^{2}x_{27} x_{28} x_{34} x_{35} x_{36} +x_{22} x_{25} x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{28} x_{34} x_{35} x_{36}
+1/2x_{22} x_{24} x_{26} x_{28} x_{34} x_{35} x_{36} -x_{21} x_{24} x_{26} x_{28} x_{34} x_{35} x_{36}
-2x_{22} x_{23} x_{26} x_{28} x_{34} x_{35} x_{36} +4x_{21} x_{23} x_{26} x_{28} x_{34} x_{35} x_{36}
+x_{22}^{2}x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{21} x_{22} x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{24} x_{25} x_{27}^{2}x_{34} x_{35} x_{36}
+2x_{23} x_{25} x_{27}^{2}x_{34} x_{35} x_{36} +x_{23} x_{24} x_{27}^{2}x_{34} x_{35} x_{36} -3/2x_{23}^{2}x_{27}^{2}x_{34} x_{35} x_{36}
+x_{21} x_{23} x_{27}^{2}x_{34} x_{35} x_{36} -3/2x_{21}^{2}x_{27}^{2}x_{34} x_{35} x_{36} +2x_{24} x_{25} x_{26} x_{27} x_{34} x_{35} x_{36}
-2x_{23} x_{25} x_{26} x_{27} x_{34} x_{35} x_{36} -x_{23} x_{24} x_{26} x_{27} x_{34} x_{35} x_{36}
+2x_{23}^{2}x_{26} x_{27} x_{34} x_{35} x_{36} -x_{22} x_{23} x_{26} x_{27} x_{34} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{27} x_{34} x_{35} x_{36}
+3x_{21} x_{22} x_{26} x_{27} x_{34} x_{35} x_{36} -2x_{24} x_{25} x_{26}^{2}x_{34} x_{35} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{34} x_{35} x_{36}
+x_{23} x_{24} x_{26}^{2}x_{34} x_{35} x_{36} -2x_{23}^{2}x_{26}^{2}x_{34} x_{35} x_{36} +2x_{22} x_{23} x_{26}^{2}x_{34} x_{35} x_{36}
-3/2x_{22}^{2}x_{26}^{2}x_{34} x_{35} x_{36} +x_{23} x_{24} x_{29} x_{30} x_{33} x_{35} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{33} x_{35} x_{36}
-x_{22} x_{23} x_{29} x_{30} x_{33} x_{35} x_{36} +2x_{22}^{2}x_{29} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{29} x_{30} x_{33} x_{35} x_{36}
+2x_{21}^{2}x_{29} x_{30} x_{33} x_{35} x_{36} -x_{24}^{2}x_{28} x_{30} x_{33} x_{35} x_{36} +2x_{22} x_{24} x_{28} x_{30} x_{33} x_{35} x_{36}
-3x_{22}^{2}x_{28} x_{30} x_{33} x_{35} x_{36} +4x_{21} x_{22} x_{28} x_{30} x_{33} x_{35} x_{36} -4x_{21}^{2}x_{28} x_{30} x_{33} x_{35} x_{36}
+x_{24}^{2}x_{27} x_{30} x_{33} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36} -2x_{22} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36}
+x_{21} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36} +3x_{22} x_{23} x_{27} x_{30} x_{33} x_{35} x_{36}
-2x_{21} x_{23} x_{27} x_{30} x_{33} x_{35} x_{36} -x_{21} x_{22} x_{27} x_{30} x_{33} x_{35} x_{36}
+2x_{21}^{2}x_{27} x_{30} x_{33} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{24} x_{26} x_{30} x_{33} x_{35} x_{36}
-2x_{22} x_{23} x_{26} x_{30} x_{33} x_{35} x_{36} +4x_{21} x_{23} x_{26} x_{30} x_{33} x_{35} x_{36}
+x_{22}^{2}x_{26} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{26} x_{30} x_{33} x_{35} x_{36} -x_{23} x_{25} x_{29}^{2}x_{33} x_{35} x_{36}
+x_{22} x_{25} x_{29}^{2}x_{33} x_{35} x_{36} +1/2x_{22} x_{23} x_{29}^{2}x_{33} x_{35} x_{36} -x_{22}^{2}x_{29}^{2}x_{33} x_{35} x_{36}
+x_{21} x_{22} x_{29}^{2}x_{33} x_{35} x_{36} -x_{21}^{2}x_{29}^{2}x_{33} x_{35} x_{36} +x_{24} x_{25} x_{28} x_{29} x_{33} x_{35} x_{36}
-x_{22} x_{25} x_{28} x_{29} x_{33} x_{35} x_{36} -1/2x_{22} x_{24} x_{28} x_{29} x_{33} x_{35} x_{36}
+3/2x_{22}^{2}x_{28} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{29} x_{33} x_{35} x_{36} +2x_{21}^{2}x_{28} x_{29} x_{33} x_{35} x_{36}
-x_{24} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} +2x_{23} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36}
-2x_{22} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} +x_{21} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36}
-1/2x_{23} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36} +2x_{22} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36}
-x_{21} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36} -3/2x_{22} x_{23} x_{27} x_{29} x_{33} x_{35} x_{36}
+x_{21} x_{23} x_{27} x_{29} x_{33} x_{35} x_{36} +1/2x_{21} x_{22} x_{27} x_{29} x_{33} x_{35} x_{36}
-x_{21}^{2}x_{27} x_{29} x_{33} x_{35} x_{36} +x_{22} x_{25} x_{26} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{29} x_{33} x_{35} x_{36}
-x_{22} x_{24} x_{26} x_{29} x_{33} x_{35} x_{36} +2x_{21} x_{24} x_{26} x_{29} x_{33} x_{35} x_{36}
+x_{22} x_{23} x_{26} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{29} x_{33} x_{35} x_{36}
-1/2x_{22}^{2}x_{26} x_{29} x_{33} x_{35} x_{36} +x_{21} x_{22} x_{26} x_{29} x_{33} x_{35} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36}
+3x_{22} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36}
+1/2x_{24}^{2}x_{27} x_{28} x_{33} x_{35} x_{36} -3/2x_{22} x_{24} x_{27} x_{28} x_{33} x_{35} x_{36}
+x_{21} x_{24} x_{27} x_{28} x_{33} x_{35} x_{36} -2x_{22} x_{25} x_{26} x_{28} x_{33} x_{35} x_{36}
+4x_{21} x_{25} x_{26} x_{28} x_{33} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{33} x_{35} x_{36}
-2x_{21} x_{24} x_{26} x_{28} x_{33} x_{35} x_{36} +2x_{24} x_{25} x_{27}^{2}x_{33} x_{35} x_{36} -3x_{23} x_{25} x_{27}^{2}x_{33} x_{35} x_{36}
+x_{21} x_{25} x_{27}^{2}x_{33} x_{35} x_{36} -x_{24}^{2}x_{27}^{2}x_{33} x_{35} x_{36} +3/2x_{23} x_{24} x_{27}^{2}x_{33} x_{35} x_{36}
-1/2x_{21} x_{24} x_{27}^{2}x_{33} x_{35} x_{36} -2x_{24} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} +4x_{23} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36}
-x_{22} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36}
+x_{24}^{2}x_{26} x_{27} x_{33} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36} +1/2x_{22} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36}
+x_{21} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36} +2x_{24} x_{25} x_{26}^{2}x_{33} x_{35} x_{36} -4x_{23} x_{25} x_{26}^{2}x_{33} x_{35} x_{36}
+2x_{22} x_{25} x_{26}^{2}x_{33} x_{35} x_{36} -x_{24}^{2}x_{26}^{2}x_{33} x_{35} x_{36} +2x_{23} x_{24} x_{26}^{2}x_{33} x_{35} x_{36}
-x_{22} x_{24} x_{26}^{2}x_{33} x_{35} x_{36} -x_{23} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36} +2x_{22} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36}
-x_{21} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36} +x_{23}^{2}x_{29} x_{30} x_{32} x_{35} x_{36} -2x_{22} x_{23} x_{29} x_{30} x_{32} x_{35} x_{36}
+x_{21} x_{23} x_{29} x_{30} x_{32} x_{35} x_{36} +x_{24}^{2}x_{28} x_{30} x_{32} x_{35} x_{36} -x_{23} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36}
-2x_{22} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36} +x_{21} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36}
+3x_{22} x_{23} x_{28} x_{30} x_{32} x_{35} x_{36} -2x_{21} x_{23} x_{28} x_{30} x_{32} x_{35} x_{36}
-x_{21} x_{22} x_{28} x_{30} x_{32} x_{35} x_{36} +2x_{21}^{2}x_{28} x_{30} x_{32} x_{35} x_{36} -2x_{24}^{2}x_{27} x_{30} x_{32} x_{35} x_{36}
+4x_{23} x_{24} x_{27} x_{30} x_{32} x_{35} x_{36} -3x_{23}^{2}x_{27} x_{30} x_{32} x_{35} x_{36} +2x_{21} x_{23} x_{27} x_{30} x_{32} x_{35} x_{36}
-3x_{21}^{2}x_{27} x_{30} x_{32} x_{35} x_{36} +x_{24}^{2}x_{26} x_{30} x_{32} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{30} x_{32} x_{35} x_{36}
+2x_{23}^{2}x_{26} x_{30} x_{32} x_{35} x_{36} -x_{22} x_{23} x_{26} x_{30} x_{32} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{32} x_{35} x_{36}
+3x_{21} x_{22} x_{26} x_{30} x_{32} x_{35} x_{36} +x_{23} x_{25} x_{29}^{2}x_{32} x_{35} x_{36} -2x_{22} x_{25} x_{29}^{2}x_{32} x_{35} x_{36}
+x_{21} x_{25} x_{29}^{2}x_{32} x_{35} x_{36} -1/2x_{23}^{2}x_{29}^{2}x_{32} x_{35} x_{36} +x_{22} x_{23} x_{29}^{2}x_{32} x_{35} x_{36}
-1/2x_{21} x_{23} x_{29}^{2}x_{32} x_{35} x_{36} -x_{24} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{23} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36}
+4x_{22} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} -2x_{21} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36}
+x_{23} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{22} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36} +1/2x_{21} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36}
-3/2x_{22} x_{23} x_{28} x_{29} x_{32} x_{35} x_{36} +x_{21} x_{23} x_{28} x_{29} x_{32} x_{35} x_{36}
+1/2x_{21} x_{22} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{21}^{2}x_{28} x_{29} x_{32} x_{35} x_{36} +2x_{24} x_{25} x_{27} x_{29} x_{32} x_{35} x_{36}
-2x_{23} x_{25} x_{27} x_{29} x_{32} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{29} x_{32} x_{35} x_{36}
+3/2x_{23}^{2}x_{27} x_{29} x_{32} x_{35} x_{36} -x_{21} x_{23} x_{27} x_{29} x_{32} x_{35} x_{36} +3/2x_{21}^{2}x_{27} x_{29} x_{32} x_{35} x_{36}
-x_{24} x_{25} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{23} x_{25} x_{26} x_{29} x_{32} x_{35} x_{36} +1/2x_{23} x_{24} x_{26} x_{29} x_{32} x_{35} x_{36}
-x_{23}^{2}x_{26} x_{29} x_{32} x_{35} x_{36} +1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{21} x_{23} x_{26} x_{29} x_{32} x_{35} x_{36}
-3/2x_{21} x_{22} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{24} x_{25} x_{28}^{2}x_{32} x_{35} x_{36} -3x_{22} x_{25} x_{28}^{2}x_{32} x_{35} x_{36}
+2x_{21} x_{25} x_{28}^{2}x_{32} x_{35} x_{36} -1/2x_{24}^{2}x_{28}^{2}x_{32} x_{35} x_{36} +3/2x_{22} x_{24} x_{28}^{2}x_{32} x_{35} x_{36}
-x_{21} x_{24} x_{28}^{2}x_{32} x_{35} x_{36} -2x_{24} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36} +3x_{23} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36}
-x_{21} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36} +x_{24}^{2}x_{27} x_{28} x_{32} x_{35} x_{36} -3/2x_{23} x_{24} x_{27} x_{28} x_{32} x_{35} x_{36}
+1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{35} x_{36} +x_{24} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36}
-2x_{23} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} +2x_{22} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36}
-2x_{21} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} -1/2x_{24}^{2}x_{26} x_{28} x_{32} x_{35} x_{36} +x_{23} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36}
-x_{22} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36} +x_{21} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36} -x_{23} x_{25} x_{26} x_{27} x_{32} x_{35} x_{36}
+3x_{21} x_{25} x_{26} x_{27} x_{32} x_{35} x_{36} +1/2x_{23} x_{24} x_{26} x_{27} x_{32} x_{35} x_{36}
-3/2x_{21} x_{24} x_{26} x_{27} x_{32} x_{35} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{32} x_{35} x_{36} -3x_{22} x_{25} x_{26}^{2}x_{32} x_{35} x_{36}
-x_{23} x_{24} x_{26}^{2}x_{32} x_{35} x_{36} +3/2x_{22} x_{24} x_{26}^{2}x_{32} x_{35} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{31} x_{35} x_{36}
+2x_{21} x_{24} x_{29} x_{30} x_{31} x_{35} x_{36} +x_{22} x_{23} x_{29} x_{30} x_{31} x_{35} x_{36}
-2x_{21} x_{23} x_{29} x_{30} x_{31} x_{35} x_{36} +x_{22} x_{24} x_{28} x_{30} x_{31} x_{35} x_{36}
-2x_{21} x_{24} x_{28} x_{30} x_{31} x_{35} x_{36} -2x_{22} x_{23} x_{28} x_{30} x_{31} x_{35} x_{36}
+4x_{21} x_{23} x_{28} x_{30} x_{31} x_{35} x_{36} +x_{22}^{2}x_{28} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{31} x_{35} x_{36}
+x_{24}^{2}x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{23} x_{24} x_{27} x_{30} x_{31} x_{35} x_{36} +2x_{23}^{2}x_{27} x_{30} x_{31} x_{35} x_{36}
-x_{22} x_{23} x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{23} x_{27} x_{30} x_{31} x_{35} x_{36}
+3x_{21} x_{22} x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{24}^{2}x_{26} x_{30} x_{31} x_{35} x_{36} +4x_{23} x_{24} x_{26} x_{30} x_{31} x_{35} x_{36}
-4x_{23}^{2}x_{26} x_{30} x_{31} x_{35} x_{36} +4x_{22} x_{23} x_{26} x_{30} x_{31} x_{35} x_{36} -3x_{22}^{2}x_{26} x_{30} x_{31} x_{35} x_{36}
+x_{22} x_{25} x_{29}^{2}x_{31} x_{35} x_{36} -2x_{21} x_{25} x_{29}^{2}x_{31} x_{35} x_{36} -1/2x_{22} x_{23} x_{29}^{2}x_{31} x_{35} x_{36}
+x_{21} x_{23} x_{29}^{2}x_{31} x_{35} x_{36} -2x_{22} x_{25} x_{28} x_{29} x_{31} x_{35} x_{36} +4x_{21} x_{25} x_{28} x_{29} x_{31} x_{35} x_{36}
+1/2x_{22} x_{24} x_{28} x_{29} x_{31} x_{35} x_{36} -x_{21} x_{24} x_{28} x_{29} x_{31} x_{35} x_{36}
+x_{22} x_{23} x_{28} x_{29} x_{31} x_{35} x_{36} -2x_{21} x_{23} x_{28} x_{29} x_{31} x_{35} x_{36}
-1/2x_{22}^{2}x_{28} x_{29} x_{31} x_{35} x_{36} +x_{21} x_{22} x_{28} x_{29} x_{31} x_{35} x_{36} -x_{24} x_{25} x_{27} x_{29} x_{31} x_{35} x_{36}
+x_{23} x_{25} x_{27} x_{29} x_{31} x_{35} x_{36} +1/2x_{23} x_{24} x_{27} x_{29} x_{31} x_{35} x_{36}
-x_{23}^{2}x_{27} x_{29} x_{31} x_{35} x_{36} +1/2x_{22} x_{23} x_{27} x_{29} x_{31} x_{35} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{31} x_{35} x_{36}
-3/2x_{21} x_{22} x_{27} x_{29} x_{31} x_{35} x_{36} +2x_{24} x_{25} x_{26} x_{29} x_{31} x_{35} x_{36}
-2x_{23} x_{25} x_{26} x_{29} x_{31} x_{35} x_{36} -x_{23} x_{24} x_{26} x_{29} x_{31} x_{35} x_{36}
+2x_{23}^{2}x_{26} x_{29} x_{31} x_{35} x_{36} -2x_{22} x_{23} x_{26} x_{29} x_{31} x_{35} x_{36} +3/2x_{22}^{2}x_{26} x_{29} x_{31} x_{35} x_{36}
+2x_{22} x_{25} x_{28}^{2}x_{31} x_{35} x_{36} -4x_{21} x_{25} x_{28}^{2}x_{31} x_{35} x_{36} -x_{22} x_{24} x_{28}^{2}x_{31} x_{35} x_{36}
+2x_{21} x_{24} x_{28}^{2}x_{31} x_{35} x_{36} +x_{24} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} -2x_{23} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36}
-x_{22} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} +4x_{21} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36}
-1/2x_{24}^{2}x_{27} x_{28} x_{31} x_{35} x_{36} +x_{23} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36} +1/2x_{22} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36}
-2x_{21} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36}
+4x_{23} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36} -2x_{22} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36}
+x_{24}^{2}x_{26} x_{28} x_{31} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{28} x_{31} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{31} x_{35} x_{36}
+x_{23} x_{25} x_{27}^{2}x_{31} x_{35} x_{36} -3x_{21} x_{25} x_{27}^{2}x_{31} x_{35} x_{36} -1/2x_{23} x_{24} x_{27}^{2}x_{31} x_{35} x_{36}
+3/2x_{21} x_{24} x_{27}^{2}x_{31} x_{35} x_{36} -2x_{23} x_{25} x_{26} x_{27} x_{31} x_{35} x_{36} +3x_{22} x_{25} x_{26} x_{27} x_{31} x_{35} x_{36}
+x_{23} x_{24} x_{26} x_{27} x_{31} x_{35} x_{36} -3/2x_{22} x_{24} x_{26} x_{27} x_{31} x_{35} x_{36}
+1/2x_{23}^{2}x_{30}^{2}x_{34}^{2}x_{36} -x_{22} x_{23} x_{30}^{2}x_{34}^{2}x_{36} +x_{22}^{2}x_{30}^{2}x_{34}^{2}x_{36}
-x_{21} x_{22} x_{30}^{2}x_{34}^{2}x_{36} +x_{21}^{2}x_{30}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{28} x_{30} x_{34}^{2}x_{36}
+x_{22} x_{25} x_{28} x_{30} x_{34}^{2}x_{36} +1/2x_{22} x_{23} x_{28} x_{30} x_{34}^{2}x_{36} -x_{22}^{2}x_{28} x_{30} x_{34}^{2}x_{36}
+x_{21} x_{22} x_{28} x_{30} x_{34}^{2}x_{36} -x_{21}^{2}x_{28} x_{30} x_{34}^{2}x_{36} +x_{23} x_{25} x_{27} x_{30} x_{34}^{2}x_{36}
-2x_{22} x_{25} x_{27} x_{30} x_{34}^{2}x_{36} +x_{21} x_{25} x_{27} x_{30} x_{34}^{2}x_{36} -1/2x_{23}^{2}x_{27} x_{30} x_{34}^{2}x_{36}
+x_{22} x_{23} x_{27} x_{30} x_{34}^{2}x_{36} -1/2x_{21} x_{23} x_{27} x_{30} x_{34}^{2}x_{36} +x_{22} x_{25} x_{26} x_{30} x_{34}^{2}x_{36}
-2x_{21} x_{25} x_{26} x_{30} x_{34}^{2}x_{36} -1/2x_{22} x_{23} x_{26} x_{30} x_{34}^{2}x_{36} +x_{21} x_{23} x_{26} x_{30} x_{34}^{2}x_{36}
+1/2x_{25}^{2}x_{28}^{2}x_{34}^{2}x_{36} -1/2x_{22} x_{25} x_{28}^{2}x_{34}^{2}x_{36} +1/2x_{22}^{2}x_{28}^{2}x_{34}^{2}x_{36}
-3/4x_{21} x_{22} x_{28}^{2}x_{34}^{2}x_{36} +3/4x_{21}^{2}x_{28}^{2}x_{34}^{2}x_{36} -x_{25}^{2}x_{27} x_{28} x_{34}^{2}x_{36}
+1/2x_{23} x_{25} x_{27} x_{28} x_{34}^{2}x_{36} +x_{22} x_{25} x_{27} x_{28} x_{34}^{2}x_{36} -1/2x_{21} x_{25} x_{27} x_{28} x_{34}^{2}x_{36}
-x_{22} x_{23} x_{27} x_{28} x_{34}^{2}x_{36} +3/4x_{21} x_{23} x_{27} x_{28} x_{34}^{2}x_{36} +1/2x_{21} x_{22} x_{27} x_{28} x_{34}^{2}x_{36}
-x_{21}^{2}x_{27} x_{28} x_{34}^{2}x_{36} -1/2x_{22} x_{25} x_{26} x_{28} x_{34}^{2}x_{36} +x_{21} x_{25} x_{26} x_{28} x_{34}^{2}x_{36}
+3/4x_{22} x_{23} x_{26} x_{28} x_{34}^{2}x_{36} -3/2x_{21} x_{23} x_{26} x_{28} x_{34}^{2}x_{36} -1/2x_{22}^{2}x_{26} x_{28} x_{34}^{2}x_{36}
+x_{21} x_{22} x_{26} x_{28} x_{34}^{2}x_{36} +x_{25}^{2}x_{27}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{27}^{2}x_{34}^{2}x_{36}
+1/2x_{23}^{2}x_{27}^{2}x_{34}^{2}x_{36} -1/2x_{21} x_{23} x_{27}^{2}x_{34}^{2}x_{36} +3/4x_{21}^{2}x_{27}^{2}x_{34}^{2}x_{36}
-x_{25}^{2}x_{26} x_{27} x_{34}^{2}x_{36} +x_{23} x_{25} x_{26} x_{27} x_{34}^{2}x_{36} -3/4x_{23}^{2}x_{26} x_{27} x_{34}^{2}x_{36}
+1/2x_{22} x_{23} x_{26} x_{27} x_{34}^{2}x_{36} +x_{21} x_{23} x_{26} x_{27} x_{34}^{2}x_{36} -3/2x_{21} x_{22} x_{26} x_{27} x_{34}^{2}x_{36}
+x_{25}^{2}x_{26}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{26}^{2}x_{34}^{2}x_{36} +3/4x_{23}^{2}x_{26}^{2}x_{34}^{2}x_{36}
-x_{22} x_{23} x_{26}^{2}x_{34}^{2}x_{36} +3/4x_{22}^{2}x_{26}^{2}x_{34}^{2}x_{36} -x_{23} x_{24} x_{30}^{2}x_{33} x_{34} x_{36}
+x_{22} x_{24} x_{30}^{2}x_{33} x_{34} x_{36} +x_{22} x_{23} x_{30}^{2}x_{33} x_{34} x_{36} -2x_{22}^{2}x_{30}^{2}x_{33} x_{34} x_{36}
+2x_{21} x_{22} x_{30}^{2}x_{33} x_{34} x_{36} -2x_{21}^{2}x_{30}^{2}x_{33} x_{34} x_{36} +x_{23} x_{25} x_{29} x_{30} x_{33} x_{34} x_{36}
-x_{22} x_{25} x_{29} x_{30} x_{33} x_{34} x_{36} -1/2x_{22} x_{23} x_{29} x_{30} x_{33} x_{34} x_{36}
+x_{22}^{2}x_{29} x_{30} x_{33} x_{34} x_{36} -x_{21} x_{22} x_{29} x_{30} x_{33} x_{34} x_{36} +x_{21}^{2}x_{29} x_{30} x_{33} x_{34} x_{36}
+x_{24} x_{25} x_{28} x_{30} x_{33} x_{34} x_{36} -x_{22} x_{25} x_{28} x_{30} x_{33} x_{34} x_{36} -1/2x_{22} x_{24} x_{28} x_{30} x_{33} x_{34} x_{36}
+3/2x_{22}^{2}x_{28} x_{30} x_{33} x_{34} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{33} x_{34} x_{36} +2x_{21}^{2}x_{28} x_{30} x_{33} x_{34} x_{36}
-x_{24} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} -x_{23} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} +4x_{22} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36}
-2x_{21} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} +x_{23} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36}
-x_{22} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36} +1/2x_{21} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36}
-3/2x_{22} x_{23} x_{27} x_{30} x_{33} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{30} x_{33} x_{34} x_{36}
+1/2x_{21} x_{22} x_{27} x_{30} x_{33} x_{34} x_{36} -x_{21}^{2}x_{27} x_{30} x_{33} x_{34} x_{36} -2x_{22} x_{25} x_{26} x_{30} x_{33} x_{34} x_{36}
+4x_{21} x_{25} x_{26} x_{30} x_{33} x_{34} x_{36} +1/2x_{22} x_{24} x_{26} x_{30} x_{33} x_{34} x_{36}
-x_{21} x_{24} x_{26} x_{30} x_{33} x_{34} x_{36} +x_{22} x_{23} x_{26} x_{30} x_{33} x_{34} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{33} x_{34} x_{36}
-1/2x_{22}^{2}x_{26} x_{30} x_{33} x_{34} x_{36} +x_{21} x_{22} x_{26} x_{30} x_{33} x_{34} x_{36} -x_{25}^{2}x_{28} x_{29} x_{33} x_{34} x_{36}
+x_{22} x_{25} x_{28} x_{29} x_{33} x_{34} x_{36} -x_{22}^{2}x_{28} x_{29} x_{33} x_{34} x_{36} +3/2x_{21} x_{22} x_{28} x_{29} x_{33} x_{34} x_{36}
-3/2x_{21}^{2}x_{28} x_{29} x_{33} x_{34} x_{36} +x_{25}^{2}x_{27} x_{29} x_{33} x_{34} x_{36} -1/2x_{23} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36}
-x_{22} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36} +1/2x_{21} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36}
+x_{22} x_{23} x_{27} x_{29} x_{33} x_{34} x_{36} -3/4x_{21} x_{23} x_{27} x_{29} x_{33} x_{34} x_{36}
-1/2x_{21} x_{22} x_{27} x_{29} x_{33} x_{34} x_{36} +x_{21}^{2}x_{27} x_{29} x_{33} x_{34} x_{36} +1/2x_{22} x_{25} x_{26} x_{29} x_{33} x_{34} x_{36}
-x_{21} x_{25} x_{26} x_{29} x_{33} x_{34} x_{36} -3/4x_{22} x_{23} x_{26} x_{29} x_{33} x_{34} x_{36}
+3/2x_{21} x_{23} x_{26} x_{29} x_{33} x_{34} x_{36} +1/2x_{22}^{2}x_{26} x_{29} x_{33} x_{34} x_{36}
-x_{21} x_{22} x_{26} x_{29} x_{33} x_{34} x_{36} +x_{25}^{2}x_{27} x_{28} x_{33} x_{34} x_{36} -1/2x_{24} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36}
-3/2x_{22} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36} +x_{21} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36}
+x_{22} x_{24} x_{27} x_{28} x_{33} x_{34} x_{36} -3/4x_{21} x_{24} x_{27} x_{28} x_{33} x_{34} x_{36}
-1/4x_{21} x_{22} x_{27} x_{28} x_{33} x_{34} x_{36} +1/2x_{21}^{2}x_{27} x_{28} x_{33} x_{34} x_{36}
+x_{22} x_{25} x_{26} x_{28} x_{33} x_{34} x_{36} -2x_{21} x_{25} x_{26} x_{28} x_{33} x_{34} x_{36}
-3/4x_{22} x_{24} x_{26} x_{28} x_{33} x_{34} x_{36} +3/2x_{21} x_{24} x_{26} x_{28} x_{33} x_{34} x_{36}
+1/4x_{22}^{2}x_{26} x_{28} x_{33} x_{34} x_{36} -1/2x_{21} x_{22} x_{26} x_{28} x_{33} x_{34} x_{36}
-2x_{25}^{2}x_{27}^{2}x_{33} x_{34} x_{36} +x_{24} x_{25} x_{27}^{2}x_{33} x_{34} x_{36} +3/2x_{23} x_{25} x_{27}^{2}x_{33} x_{34} x_{36}
-1/2x_{21} x_{25} x_{27}^{2}x_{33} x_{34} x_{36} -x_{23} x_{24} x_{27}^{2}x_{33} x_{34} x_{36} +1/2x_{21} x_{24} x_{27}^{2}x_{33} x_{34} x_{36}
+1/4x_{21} x_{23} x_{27}^{2}x_{33} x_{34} x_{36} -3/4x_{21}^{2}x_{27}^{2}x_{33} x_{34} x_{36} +2x_{25}^{2}x_{26} x_{27} x_{33} x_{34} x_{36}
-x_{24} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} -2x_{23} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36}
+1/2x_{22} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} +x_{21} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36}
+3/2x_{23} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36} -1/2x_{22} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36}
-x_{21} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36} -1/4x_{22} x_{23} x_{26} x_{27} x_{33} x_{34} x_{36}
-1/2x_{21} x_{23} x_{26} x_{27} x_{33} x_{34} x_{36} +3/2x_{21} x_{22} x_{26} x_{27} x_{33} x_{34} x_{36}
-2x_{25}^{2}x_{26}^{2}x_{33} x_{34} x_{36} +x_{24} x_{25} x_{26}^{2}x_{33} x_{34} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{33} x_{34} x_{36}
-x_{22} x_{25} x_{26}^{2}x_{33} x_{34} x_{36} -3/2x_{23} x_{24} x_{26}^{2}x_{33} x_{34} x_{36} +x_{22} x_{24} x_{26}^{2}x_{33} x_{34} x_{36}
+1/2x_{22} x_{23} x_{26}^{2}x_{33} x_{34} x_{36} -3/4x_{22}^{2}x_{26}^{2}x_{33} x_{34} x_{36} +x_{23} x_{24} x_{30}^{2}x_{32} x_{34} x_{36}
-2x_{22} x_{24} x_{30}^{2}x_{32} x_{34} x_{36} +x_{21} x_{24} x_{30}^{2}x_{32} x_{34} x_{36} -x_{23}^{2}x_{30}^{2}x_{32} x_{34} x_{36}
+2x_{22} x_{23} x_{30}^{2}x_{32} x_{34} x_{36} -x_{21} x_{23} x_{30}^{2}x_{32} x_{34} x_{36} -x_{23} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36}
+2x_{22} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36} -x_{21} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36}
+1/2x_{23}^{2}x_{29} x_{30} x_{32} x_{34} x_{36} -x_{22} x_{23} x_{29} x_{30} x_{32} x_{34} x_{36} +1/2x_{21} x_{23} x_{29} x_{30} x_{32} x_{34} x_{36}
-x_{24} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{23} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36}
-2x_{22} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} +x_{21} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36}
-1/2x_{23} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{22} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36}
-x_{21} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36} -3/2x_{22} x_{23} x_{28} x_{30} x_{32} x_{34} x_{36}
+x_{21} x_{23} x_{28} x_{30} x_{32} x_{34} x_{36} +1/2x_{21} x_{22} x_{28} x_{30} x_{32} x_{34} x_{36}
-x_{21}^{2}x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{24} x_{25} x_{27} x_{30} x_{32} x_{34} x_{36} -2x_{23} x_{25} x_{27} x_{30} x_{32} x_{34} x_{36}
-x_{23} x_{24} x_{27} x_{30} x_{32} x_{34} x_{36} +3/2x_{23}^{2}x_{27} x_{30} x_{32} x_{34} x_{36} -x_{21} x_{23} x_{27} x_{30} x_{32} x_{34} x_{36}
+3/2x_{21}^{2}x_{27} x_{30} x_{32} x_{34} x_{36} -x_{24} x_{25} x_{26} x_{30} x_{32} x_{34} x_{36} +x_{23} x_{25} x_{26} x_{30} x_{32} x_{34} x_{36}
+1/2x_{23} x_{24} x_{26} x_{30} x_{32} x_{34} x_{36} -x_{23}^{2}x_{26} x_{30} x_{32} x_{34} x_{36} +1/2x_{22} x_{23} x_{26} x_{30} x_{32} x_{34} x_{36}
+x_{21} x_{23} x_{26} x_{30} x_{32} x_{34} x_{36} -3/2x_{21} x_{22} x_{26} x_{30} x_{32} x_{34} x_{36}
+x_{25}^{2}x_{28} x_{29} x_{32} x_{34} x_{36} -1/2x_{23} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36} -x_{22} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36}
+1/2x_{21} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36} +x_{22} x_{23} x_{28} x_{29} x_{32} x_{34} x_{36}
-3/4x_{21} x_{23} x_{28} x_{29} x_{32} x_{34} x_{36} -1/2x_{21} x_{22} x_{28} x_{29} x_{32} x_{34} x_{36}
+x_{21}^{2}x_{28} x_{29} x_{32} x_{34} x_{36} -2x_{25}^{2}x_{27} x_{29} x_{32} x_{34} x_{36} +2x_{23} x_{25} x_{27} x_{29} x_{32} x_{34} x_{36}
-x_{23}^{2}x_{27} x_{29} x_{32} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{32} x_{34} x_{36} -3/2x_{21}^{2}x_{27} x_{29} x_{32} x_{34} x_{36}
+x_{25}^{2}x_{26} x_{29} x_{32} x_{34} x_{36} -x_{23} x_{25} x_{26} x_{29} x_{32} x_{34} x_{36} +3/4x_{23}^{2}x_{26} x_{29} x_{32} x_{34} x_{36}
-1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{34} x_{36} -x_{21} x_{23} x_{26} x_{29} x_{32} x_{34} x_{36}
+3/2x_{21} x_{22} x_{26} x_{29} x_{32} x_{34} x_{36} -x_{25}^{2}x_{28}^{2}x_{32} x_{34} x_{36} +1/2x_{24} x_{25} x_{28}^{2}x_{32} x_{34} x_{36}
+3/2x_{22} x_{25} x_{28}^{2}x_{32} x_{34} x_{36} -x_{21} x_{25} x_{28}^{2}x_{32} x_{34} x_{36} -x_{22} x_{24} x_{28}^{2}x_{32} x_{34} x_{36}
+3/4x_{21} x_{24} x_{28}^{2}x_{32} x_{34} x_{36} +1/4x_{21} x_{22} x_{28}^{2}x_{32} x_{34} x_{36} -1/2x_{21}^{2}x_{28}^{2}x_{32} x_{34} x_{36}
+2x_{25}^{2}x_{27} x_{28} x_{32} x_{34} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36} -3/2x_{23} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36}
+1/2x_{21} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36} +x_{23} x_{24} x_{27} x_{28} x_{32} x_{34} x_{36}
-1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{34} x_{36} -1/4x_{21} x_{23} x_{27} x_{28} x_{32} x_{34} x_{36}
+3/4x_{21}^{2}x_{27} x_{28} x_{32} x_{34} x_{36} -x_{25}^{2}x_{26} x_{28} x_{32} x_{34} x_{36} +1/2x_{24} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36}
+x_{23} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} -x_{22} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{21} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36}
-3/4x_{23} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36}
-x_{21} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36} -1/4x_{22} x_{23} x_{26} x_{28} x_{32} x_{34} x_{36}
+x_{21} x_{23} x_{26} x_{28} x_{32} x_{34} x_{36} -3/4x_{21} x_{22} x_{26} x_{28} x_{32} x_{34} x_{36}
+1/2x_{23} x_{25} x_{26} x_{27} x_{32} x_{34} x_{36} -3/2x_{21} x_{25} x_{26} x_{27} x_{32} x_{34} x_{36}
-1/2x_{23} x_{24} x_{26} x_{27} x_{32} x_{34} x_{36} +3/2x_{21} x_{24} x_{26} x_{27} x_{32} x_{34} x_{36}
+1/4x_{23}^{2}x_{26} x_{27} x_{32} x_{34} x_{36} -3/4x_{21} x_{23} x_{26} x_{27} x_{32} x_{34} x_{36}
-x_{23} x_{25} x_{26}^{2}x_{32} x_{34} x_{36} +3/2x_{22} x_{25} x_{26}^{2}x_{32} x_{34} x_{36} +x_{23} x_{24} x_{26}^{2}x_{32} x_{34} x_{36}
-3/2x_{22} x_{24} x_{26}^{2}x_{32} x_{34} x_{36} -1/2x_{23}^{2}x_{26}^{2}x_{32} x_{34} x_{36} +3/4x_{22} x_{23} x_{26}^{2}x_{32} x_{34} x_{36}
+x_{22} x_{24} x_{30}^{2}x_{31} x_{34} x_{36} -2x_{21} x_{24} x_{30}^{2}x_{31} x_{34} x_{36} -x_{22} x_{23} x_{30}^{2}x_{31} x_{34} x_{36}
+2x_{21} x_{23} x_{30}^{2}x_{31} x_{34} x_{36} -x_{22} x_{25} x_{29} x_{30} x_{31} x_{34} x_{36} +2x_{21} x_{25} x_{29} x_{30} x_{31} x_{34} x_{36}
+1/2x_{22} x_{23} x_{29} x_{30} x_{31} x_{34} x_{36} -x_{21} x_{23} x_{29} x_{30} x_{31} x_{34} x_{36}
+x_{22} x_{25} x_{28} x_{30} x_{31} x_{34} x_{36} -2x_{21} x_{25} x_{28} x_{30} x_{31} x_{34} x_{36}
-x_{22} x_{24} x_{28} x_{30} x_{31} x_{34} x_{36} +2x_{21} x_{24} x_{28} x_{30} x_{31} x_{34} x_{36}
+x_{22} x_{23} x_{28} x_{30} x_{31} x_{34} x_{36} -2x_{21} x_{23} x_{28} x_{30} x_{31} x_{34} x_{36}
-1/2x_{22}^{2}x_{28} x_{30} x_{31} x_{34} x_{36} +x_{21} x_{22} x_{28} x_{30} x_{31} x_{34} x_{36} -x_{24} x_{25} x_{27} x_{30} x_{31} x_{34} x_{36}
+x_{23} x_{25} x_{27} x_{30} x_{31} x_{34} x_{36} +1/2x_{23} x_{24} x_{27} x_{30} x_{31} x_{34} x_{36}
-x_{23}^{2}x_{27} x_{30} x_{31} x_{34} x_{36} +1/2x_{22} x_{23} x_{27} x_{30} x_{31} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{30} x_{31} x_{34} x_{36}
-3/2x_{21} x_{22} x_{27} x_{30} x_{31} x_{34} x_{36} +2x_{24} x_{25} x_{26} x_{30} x_{31} x_{34} x_{36}
-2x_{23} x_{25} x_{26} x_{30} x_{31} x_{34} x_{36} -x_{23} x_{24} x_{26} x_{30} x_{31} x_{34} x_{36}
+2x_{23}^{2}x_{26} x_{30} x_{31} x_{34} x_{36} -2x_{22} x_{23} x_{26} x_{30} x_{31} x_{34} x_{36} +3/2x_{22}^{2}x_{26} x_{30} x_{31} x_{34} x_{36}
+1/2x_{22} x_{25} x_{28} x_{29} x_{31} x_{34} x_{36} -x_{21} x_{25} x_{28} x_{29} x_{31} x_{34} x_{36}
-3/4x_{22} x_{23} x_{28} x_{29} x_{31} x_{34} x_{36} +3/2x_{21} x_{23} x_{28} x_{29} x_{31} x_{34} x_{36}
+1/2x_{22}^{2}x_{28} x_{29} x_{31} x_{34} x_{36} -x_{21} x_{22} x_{28} x_{29} x_{31} x_{34} x_{36} +x_{25}^{2}x_{27} x_{29} x_{31} x_{34} x_{36}
-x_{23} x_{25} x_{27} x_{29} x_{31} x_{34} x_{36} +3/4x_{23}^{2}x_{27} x_{29} x_{31} x_{34} x_{36} -1/2x_{22} x_{23} x_{27} x_{29} x_{31} x_{34} x_{36}
-x_{21} x_{23} x_{27} x_{29} x_{31} x_{34} x_{36} +3/2x_{21} x_{22} x_{27} x_{29} x_{31} x_{34} x_{36}
-2x_{25}^{2}x_{26} x_{29} x_{31} x_{34} x_{36} +2x_{23} x_{25} x_{26} x_{29} x_{31} x_{34} x_{36} -3/2x_{23}^{2}x_{26} x_{29} x_{31} x_{34} x_{36}
+2x_{22} x_{23} x_{26} x_{29} x_{31} x_{34} x_{36} -3/2x_{22}^{2}x_{26} x_{29} x_{31} x_{34} x_{36} -x_{22} x_{25} x_{28}^{2}x_{31} x_{34} x_{36}
+2x_{21} x_{25} x_{28}^{2}x_{31} x_{34} x_{36} +3/4x_{22} x_{24} x_{28}^{2}x_{31} x_{34} x_{36} -3/2x_{21} x_{24} x_{28}^{2}x_{31} x_{34} x_{36}
-1/4x_{22}^{2}x_{28}^{2}x_{31} x_{34} x_{36} +1/2x_{21} x_{22} x_{28}^{2}x_{31} x_{34} x_{36} -x_{25}^{2}x_{27} x_{28} x_{31} x_{34} x_{36}
+1/2x_{24} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} +x_{23} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36}
+1/2x_{22} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} -2x_{21} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36}
-3/4x_{23} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36} -1/2x_{22} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36}
+2x_{21} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36} +1/2x_{22} x_{23} x_{27} x_{28} x_{31} x_{34} x_{36}
-1/2x_{21} x_{23} x_{27} x_{28} x_{31} x_{34} x_{36} -3/4x_{21} x_{22} x_{27} x_{28} x_{31} x_{34} x_{36}
+2x_{25}^{2}x_{26} x_{28} x_{31} x_{34} x_{36} -x_{24} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36} -2x_{23} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36}
+x_{22} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36} +3/2x_{23} x_{24} x_{26} x_{28} x_{31} x_{34} x_{36}
-x_{22} x_{24} x_{26} x_{28} x_{31} x_{34} x_{36} -1/2x_{22} x_{23} x_{26} x_{28} x_{31} x_{34} x_{36}
+3/4x_{22}^{2}x_{26} x_{28} x_{31} x_{34} x_{36} -1/2x_{23} x_{25} x_{27}^{2}x_{31} x_{34} x_{36} +3/2x_{21} x_{25} x_{27}^{2}x_{31} x_{34} x_{36}
+1/2x_{23} x_{24} x_{27}^{2}x_{31} x_{34} x_{36} -3/2x_{21} x_{24} x_{27}^{2}x_{31} x_{34} x_{36} -1/4x_{23}^{2}x_{27}^{2}x_{31} x_{34} x_{36}
+3/4x_{21} x_{23} x_{27}^{2}x_{31} x_{34} x_{36} +x_{23} x_{25} x_{26} x_{27} x_{31} x_{34} x_{36} -3/2x_{22} x_{25} x_{26} x_{27} x_{31} x_{34} x_{36}
-x_{23} x_{24} x_{26} x_{27} x_{31} x_{34} x_{36} +3/2x_{22} x_{24} x_{26} x_{27} x_{31} x_{34} x_{36}
+1/2x_{23}^{2}x_{26} x_{27} x_{31} x_{34} x_{36} -3/4x_{22} x_{23} x_{26} x_{27} x_{31} x_{34} x_{36}
+1/2x_{24}^{2}x_{30}^{2}x_{33}^{2}x_{36} -x_{22} x_{24} x_{30}^{2}x_{33}^{2}x_{36} +3/2x_{22}^{2}x_{30}^{2}x_{33}^{2}x_{36}
-2x_{21} x_{22} x_{30}^{2}x_{33}^{2}x_{36} +2x_{21}^{2}x_{30}^{2}x_{33}^{2}x_{36} -x_{24} x_{25} x_{29} x_{30} x_{33}^{2}x_{36}
+x_{22} x_{25} x_{29} x_{30} x_{33}^{2}x_{36} +1/2x_{22} x_{24} x_{29} x_{30} x_{33}^{2}x_{36} -3/2x_{22}^{2}x_{29} x_{30} x_{33}^{2}x_{36}
+2x_{21} x_{22} x_{29} x_{30} x_{33}^{2}x_{36} -2x_{21}^{2}x_{29} x_{30} x_{33}^{2}x_{36} +x_{24} x_{25} x_{27} x_{30} x_{33}^{2}x_{36}
-3x_{22} x_{25} x_{27} x_{30} x_{33}^{2}x_{36} +2x_{21} x_{25} x_{27} x_{30} x_{33}^{2}x_{36} -1/2x_{24}^{2}x_{27} x_{30} x_{33}^{2}x_{36}
+3/2x_{22} x_{24} x_{27} x_{30} x_{33}^{2}x_{36} -x_{21} x_{24} x_{27} x_{30} x_{33}^{2}x_{36} +2x_{22} x_{25} x_{26} x_{30} x_{33}^{2}x_{36}
-4x_{21} x_{25} x_{26} x_{30} x_{33}^{2}x_{36} -x_{22} x_{24} x_{26} x_{30} x_{33}^{2}x_{36} +2x_{21} x_{24} x_{26} x_{30} x_{33}^{2}x_{36}
+1/2x_{25}^{2}x_{29}^{2}x_{33}^{2}x_{36} -1/2x_{22} x_{25} x_{29}^{2}x_{33}^{2}x_{36} +1/2x_{22}^{2}x_{29}^{2}x_{33}^{2}x_{36}
-3/4x_{21} x_{22} x_{29}^{2}x_{33}^{2}x_{36} +3/4x_{21}^{2}x_{29}^{2}x_{33}^{2}x_{36} -x_{25}^{2}x_{27} x_{29} x_{33}^{2}x_{36}
+1/2x_{24} x_{25} x_{27} x_{29} x_{33}^{2}x_{36} +3/2x_{22} x_{25} x_{27} x_{29} x_{33}^{2}x_{36} -x_{21} x_{25} x_{27} x_{29} x_{33}^{2}x_{36}
-x_{22} x_{24} x_{27} x_{29} x_{33}^{2}x_{36} +3/4x_{21} x_{24} x_{27} x_{29} x_{33}^{2}x_{36} +1/4x_{21} x_{22} x_{27} x_{29} x_{33}^{2}x_{36}
-1/2x_{21}^{2}x_{27} x_{29} x_{33}^{2}x_{36} -x_{22} x_{25} x_{26} x_{29} x_{33}^{2}x_{36} +2x_{21} x_{25} x_{26} x_{29} x_{33}^{2}x_{36}
+3/4x_{22} x_{24} x_{26} x_{29} x_{33}^{2}x_{36} -3/2x_{21} x_{24} x_{26} x_{29} x_{33}^{2}x_{36} -1/4x_{22}^{2}x_{26} x_{29} x_{33}^{2}x_{36}
+1/2x_{21} x_{22} x_{26} x_{29} x_{33}^{2}x_{36} +3/2x_{25}^{2}x_{27}^{2}x_{33}^{2}x_{36} -3/2x_{24} x_{25} x_{27}^{2}x_{33}^{2}x_{36}
+1/2x_{24}^{2}x_{27}^{2}x_{33}^{2}x_{36} -1/4x_{21} x_{24} x_{27}^{2}x_{33}^{2}x_{36} +1/2x_{21}^{2}x_{27}^{2}x_{33}^{2}x_{36}
-2x_{25}^{2}x_{26} x_{27} x_{33}^{2}x_{36} +2x_{24} x_{25} x_{26} x_{27} x_{33}^{2}x_{36} -3/4x_{24}^{2}x_{26} x_{27} x_{33}^{2}x_{36}
+1/4x_{22} x_{24} x_{26} x_{27} x_{33}^{2}x_{36} +1/2x_{21} x_{24} x_{26} x_{27} x_{33}^{2}x_{36} -x_{21} x_{22} x_{26} x_{27} x_{33}^{2}x_{36}
+2x_{25}^{2}x_{26}^{2}x_{33}^{2}x_{36} -2x_{24} x_{25} x_{26}^{2}x_{33}^{2}x_{36} +3/4x_{24}^{2}x_{26}^{2}x_{33}^{2}x_{36}
-1/2x_{22} x_{24} x_{26}^{2}x_{33}^{2}x_{36} +1/2x_{22}^{2}x_{26}^{2}x_{33}^{2}x_{36} -x_{24}^{2}x_{30}^{2}x_{32} x_{33} x_{36}
+x_{23} x_{24} x_{30}^{2}x_{32} x_{33} x_{36} +2x_{22} x_{24} x_{30}^{2}x_{32} x_{33} x_{36} -x_{21} x_{24} x_{30}^{2}x_{32} x_{33} x_{36}
-3x_{22} x_{23} x_{30}^{2}x_{32} x_{33} x_{36} +2x_{21} x_{23} x_{30}^{2}x_{32} x_{33} x_{36} +x_{21} x_{22} x_{30}^{2}x_{32} x_{33} x_{36}
-2x_{21}^{2}x_{30}^{2}x_{32} x_{33} x_{36} +2x_{24} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{23} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36}
-2x_{22} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} +x_{21} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36}
-1/2x_{23} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36}
+1/2x_{21} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36} +3x_{22} x_{23} x_{29} x_{30} x_{32} x_{33} x_{36}
-2x_{21} x_{23} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{21} x_{22} x_{29} x_{30} x_{32} x_{33} x_{36}
+2x_{21}^{2}x_{29} x_{30} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36} +3x_{22} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36}
-2x_{21} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36} +1/2x_{24}^{2}x_{28} x_{30} x_{32} x_{33} x_{36} -3/2x_{22} x_{24} x_{28} x_{30} x_{32} x_{33} x_{36}
+x_{21} x_{24} x_{28} x_{30} x_{32} x_{33} x_{36} -2x_{24} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36}
+3x_{23} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36} -x_{21} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36}
+x_{24}^{2}x_{27} x_{30} x_{32} x_{33} x_{36} -3/2x_{23} x_{24} x_{27} x_{30} x_{32} x_{33} x_{36} +1/2x_{21} x_{24} x_{27} x_{30} x_{32} x_{33} x_{36}
+x_{24} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} -2x_{23} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36}
-x_{22} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} +4x_{21} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36}
-1/2x_{24}^{2}x_{26} x_{30} x_{32} x_{33} x_{36} +x_{23} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36} +1/2x_{22} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36}
-2x_{21} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36} -x_{25}^{2}x_{29}^{2}x_{32} x_{33} x_{36} +1/2x_{23} x_{25} x_{29}^{2}x_{32} x_{33} x_{36}
+x_{22} x_{25} x_{29}^{2}x_{32} x_{33} x_{36} -1/2x_{21} x_{25} x_{29}^{2}x_{32} x_{33} x_{36} -x_{22} x_{23} x_{29}^{2}x_{32} x_{33} x_{36}
+3/4x_{21} x_{23} x_{29}^{2}x_{32} x_{33} x_{36} +1/2x_{21} x_{22} x_{29}^{2}x_{32} x_{33} x_{36} -x_{21}^{2}x_{29}^{2}x_{32} x_{33} x_{36}
+x_{25}^{2}x_{28} x_{29} x_{32} x_{33} x_{36} -1/2x_{24} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36} -3/2x_{22} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36}
+x_{21} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36} +x_{22} x_{24} x_{28} x_{29} x_{32} x_{33} x_{36} -3/4x_{21} x_{24} x_{28} x_{29} x_{32} x_{33} x_{36}
-1/4x_{21} x_{22} x_{28} x_{29} x_{32} x_{33} x_{36} +1/2x_{21}^{2}x_{28} x_{29} x_{32} x_{33} x_{36}
+2x_{25}^{2}x_{27} x_{29} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36} -3/2x_{23} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36}
+1/2x_{21} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36} +x_{23} x_{24} x_{27} x_{29} x_{32} x_{33} x_{36}
-1/2x_{21} x_{24} x_{27} x_{29} x_{32} x_{33} x_{36} -1/4x_{21} x_{23} x_{27} x_{29} x_{32} x_{33} x_{36}
+3/4x_{21}^{2}x_{27} x_{29} x_{32} x_{33} x_{36} -x_{25}^{2}x_{26} x_{29} x_{32} x_{33} x_{36} +1/2x_{24} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36}
+x_{23} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} +1/2x_{22} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36}
-2x_{21} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} -3/4x_{23} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36}
-1/2x_{22} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36} +2x_{21} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36}
+1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{33} x_{36} -1/2x_{21} x_{23} x_{26} x_{29} x_{32} x_{33} x_{36}
-3/4x_{21} x_{22} x_{26} x_{29} x_{32} x_{33} x_{36} -3x_{25}^{2}x_{27} x_{28} x_{32} x_{33} x_{36} +3x_{24} x_{25} x_{27} x_{28} x_{32} x_{33} x_{36}
-x_{24}^{2}x_{27} x_{28} x_{32} x_{33} x_{36} +1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{33} x_{36} -x_{21}^{2}x_{27} x_{28} x_{32} x_{33} x_{36}
+2x_{25}^{2}x_{26} x_{28} x_{32} x_{33} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{32} x_{33} x_{36} +3/4x_{24}^{2}x_{26} x_{28} x_{32} x_{33} x_{36}
-1/4x_{22} x_{24} x_{26} x_{28} x_{32} x_{33} x_{36} -1/2x_{21} x_{24} x_{26} x_{28} x_{32} x_{33} x_{36}
+x_{21} x_{22} x_{26} x_{28} x_{32} x_{33} x_{36} +x_{25}^{2}x_{26} x_{27} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{26} x_{27} x_{32} x_{33} x_{36}
+1/2x_{24}^{2}x_{26} x_{27} x_{32} x_{33} x_{36} -1/4x_{23} x_{24} x_{26} x_{27} x_{32} x_{33} x_{36}
-3/4x_{21} x_{24} x_{26} x_{27} x_{32} x_{33} x_{36} +x_{21} x_{23} x_{26} x_{27} x_{32} x_{33} x_{36}
-2x_{25}^{2}x_{26}^{2}x_{32} x_{33} x_{36} +2x_{24} x_{25} x_{26}^{2}x_{32} x_{33} x_{36} -x_{24}^{2}x_{26}^{2}x_{32} x_{33} x_{36}
+1/2x_{23} x_{24} x_{26}^{2}x_{32} x_{33} x_{36} +3/4x_{22} x_{24} x_{26}^{2}x_{32} x_{33} x_{36} -x_{22} x_{23} x_{26}^{2}x_{32} x_{33} x_{36}
-x_{22} x_{24} x_{30}^{2}x_{31} x_{33} x_{36} +2x_{21} x_{24} x_{30}^{2}x_{31} x_{33} x_{36} +2x_{22} x_{23} x_{30}^{2}x_{31} x_{33} x_{36}
-4x_{21} x_{23} x_{30}^{2}x_{31} x_{33} x_{36} -x_{22}^{2}x_{30}^{2}x_{31} x_{33} x_{36} +2x_{21} x_{22} x_{30}^{2}x_{31} x_{33} x_{36}
+x_{22} x_{25} x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{25} x_{29} x_{30} x_{31} x_{33} x_{36}
+1/2x_{22} x_{24} x_{29} x_{30} x_{31} x_{33} x_{36} -x_{21} x_{24} x_{29} x_{30} x_{31} x_{33} x_{36}
-2x_{22} x_{23} x_{29} x_{30} x_{31} x_{33} x_{36} +4x_{21} x_{23} x_{29} x_{30} x_{31} x_{33} x_{36}
+x_{22}^{2}x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{22} x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{22} x_{25} x_{28} x_{30} x_{31} x_{33} x_{36}
+4x_{21} x_{25} x_{28} x_{30} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{28} x_{30} x_{31} x_{33} x_{36}
-2x_{21} x_{24} x_{28} x_{30} x_{31} x_{33} x_{36} +x_{24} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36}
-2x_{23} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} +2x_{22} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36}
-2x_{21} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} -1/2x_{24}^{2}x_{27} x_{30} x_{31} x_{33} x_{36} +x_{23} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36}
-x_{22} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36} +x_{21} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36} -2x_{24} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36}
+4x_{23} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36} -2x_{22} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36}
+x_{24}^{2}x_{26} x_{30} x_{31} x_{33} x_{36} -2x_{23} x_{24} x_{26} x_{30} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{26} x_{30} x_{31} x_{33} x_{36}
-1/2x_{22} x_{25} x_{29}^{2}x_{31} x_{33} x_{36} +x_{21} x_{25} x_{29}^{2}x_{31} x_{33} x_{36} +3/4x_{22} x_{23} x_{29}^{2}x_{31} x_{33} x_{36}
-3/2x_{21} x_{23} x_{29}^{2}x_{31} x_{33} x_{36} -1/2x_{22}^{2}x_{29}^{2}x_{31} x_{33} x_{36} +x_{21} x_{22} x_{29}^{2}x_{31} x_{33} x_{36}
+x_{22} x_{25} x_{28} x_{29} x_{31} x_{33} x_{36} -2x_{21} x_{25} x_{28} x_{29} x_{31} x_{33} x_{36}
-3/4x_{22} x_{24} x_{28} x_{29} x_{31} x_{33} x_{36} +3/2x_{21} x_{24} x_{28} x_{29} x_{31} x_{33} x_{36}
+1/4x_{22}^{2}x_{28} x_{29} x_{31} x_{33} x_{36} -1/2x_{21} x_{22} x_{28} x_{29} x_{31} x_{33} x_{36}
-x_{25}^{2}x_{27} x_{29} x_{31} x_{33} x_{36} +1/2x_{24} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{23} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36}
-x_{22} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{21} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} -3/4x_{23} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36}
+x_{22} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36} -x_{21} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36} -1/4x_{22} x_{23} x_{27} x_{29} x_{31} x_{33} x_{36}
+x_{21} x_{23} x_{27} x_{29} x_{31} x_{33} x_{36} -3/4x_{21} x_{22} x_{27} x_{29} x_{31} x_{33} x_{36}
+2x_{25}^{2}x_{26} x_{29} x_{31} x_{33} x_{36} -x_{24} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36} -2x_{23} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36}
+x_{22} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36} +3/2x_{23} x_{24} x_{26} x_{29} x_{31} x_{33} x_{36}
-x_{22} x_{24} x_{26} x_{29} x_{31} x_{33} x_{36} -1/2x_{22} x_{23} x_{26} x_{29} x_{31} x_{33} x_{36}
+3/4x_{22}^{2}x_{26} x_{29} x_{31} x_{33} x_{36} +2x_{25}^{2}x_{27} x_{28} x_{31} x_{33} x_{36} -2x_{24} x_{25} x_{27} x_{28} x_{31} x_{33} x_{36}
+3/4x_{24}^{2}x_{27} x_{28} x_{31} x_{33} x_{36} -1/4x_{22} x_{24} x_{27} x_{28} x_{31} x_{33} x_{36}
-1/2x_{21} x_{24} x_{27} x_{28} x_{31} x_{33} x_{36} +x_{21} x_{22} x_{27} x_{28} x_{31} x_{33} x_{36}
-4x_{25}^{2}x_{26} x_{28} x_{31} x_{33} x_{36} +4x_{24} x_{25} x_{26} x_{28} x_{31} x_{33} x_{36} -3/2x_{24}^{2}x_{26} x_{28} x_{31} x_{33} x_{36}
+x_{22} x_{24} x_{26} x_{28} x_{31} x_{33} x_{36} -x_{22}^{2}x_{26} x_{28} x_{31} x_{33} x_{36} -x_{25}^{2}x_{27}^{2}x_{31} x_{33} x_{36}
+x_{24} x_{25} x_{27}^{2}x_{31} x_{33} x_{36} -1/2x_{24}^{2}x_{27}^{2}x_{31} x_{33} x_{36} +1/4x_{23} x_{24} x_{27}^{2}x_{31} x_{33} x_{36}
+3/4x_{21} x_{24} x_{27}^{2}x_{31} x_{33} x_{36} -x_{21} x_{23} x_{27}^{2}x_{31} x_{33} x_{36} +2x_{25}^{2}x_{26} x_{27} x_{31} x_{33} x_{36}
-2x_{24} x_{25} x_{26} x_{27} x_{31} x_{33} x_{36} +x_{24}^{2}x_{26} x_{27} x_{31} x_{33} x_{36} -1/2x_{23} x_{24} x_{26} x_{27} x_{31} x_{33} x_{36}
-3/4x_{22} x_{24} x_{26} x_{27} x_{31} x_{33} x_{36} +x_{22} x_{23} x_{26} x_{27} x_{31} x_{33} x_{36}
+x_{24}^{2}x_{30}^{2}x_{32}^{2}x_{36} -2x_{23} x_{24} x_{30}^{2}x_{32}^{2}x_{36} +3/2x_{23}^{2}x_{30}^{2}x_{32}^{2}x_{36}
-x_{21} x_{23} x_{30}^{2}x_{32}^{2}x_{36} +3/2x_{21}^{2}x_{30}^{2}x_{32}^{2}x_{36} -2x_{24} x_{25} x_{29} x_{30} x_{32}^{2}x_{36}
+2x_{23} x_{25} x_{29} x_{30} x_{32}^{2}x_{36} +x_{23} x_{24} x_{29} x_{30} x_{32}^{2}x_{36} -3/2x_{23}^{2}x_{29} x_{30} x_{32}^{2}x_{36}
+x_{21} x_{23} x_{29} x_{30} x_{32}^{2}x_{36} -3/2x_{21}^{2}x_{29} x_{30} x_{32}^{2}x_{36} +2x_{24} x_{25} x_{28} x_{30} x_{32}^{2}x_{36}
-3x_{23} x_{25} x_{28} x_{30} x_{32}^{2}x_{36} +x_{21} x_{25} x_{28} x_{30} x_{32}^{2}x_{36} -x_{24}^{2}x_{28} x_{30} x_{32}^{2}x_{36}
+3/2x_{23} x_{24} x_{28} x_{30} x_{32}^{2}x_{36} -1/2x_{21} x_{24} x_{28} x_{30} x_{32}^{2}x_{36} +x_{23} x_{25} x_{26} x_{30} x_{32}^{2}x_{36}
-3x_{21} x_{25} x_{26} x_{30} x_{32}^{2}x_{36} -1/2x_{23} x_{24} x_{26} x_{30} x_{32}^{2}x_{36} +3/2x_{21} x_{24} x_{26} x_{30} x_{32}^{2}x_{36}
+x_{25}^{2}x_{29}^{2}x_{32}^{2}x_{36} -x_{23} x_{25} x_{29}^{2}x_{32}^{2}x_{36} +1/2x_{23}^{2}x_{29}^{2}x_{32}^{2}x_{36}
-1/2x_{21} x_{23} x_{29}^{2}x_{32}^{2}x_{36} +3/4x_{21}^{2}x_{29}^{2}x_{32}^{2}x_{36} -2x_{25}^{2}x_{28} x_{29} x_{32}^{2}x_{36}
+x_{24} x_{25} x_{28} x_{29} x_{32}^{2}x_{36} +3/2x_{23} x_{25} x_{28} x_{29} x_{32}^{2}x_{36} -1/2x_{21} x_{25} x_{28} x_{29} x_{32}^{2}x_{36}
-x_{23} x_{24} x_{28} x_{29} x_{32}^{2}x_{36} +1/2x_{21} x_{24} x_{28} x_{29} x_{32}^{2}x_{36} +1/4x_{21} x_{23} x_{28} x_{29} x_{32}^{2}x_{36}
-3/4x_{21}^{2}x_{28} x_{29} x_{32}^{2}x_{36} -1/2x_{23} x_{25} x_{26} x_{29} x_{32}^{2}x_{36} +3/2x_{21} x_{25} x_{26} x_{29} x_{32}^{2}x_{36}
+1/2x_{23} x_{24} x_{26} x_{29} x_{32}^{2}x_{36} -3/2x_{21} x_{24} x_{26} x_{29} x_{32}^{2}x_{36} -1/4x_{23}^{2}x_{26} x_{29} x_{32}^{2}x_{36}
+3/4x_{21} x_{23} x_{26} x_{29} x_{32}^{2}x_{36} +3/2x_{25}^{2}x_{28}^{2}x_{32}^{2}x_{36} -3/2x_{24} x_{25} x_{28}^{2}x_{32}^{2}x_{36}
+1/2x_{24}^{2}x_{28}^{2}x_{32}^{2}x_{36} -1/4x_{21} x_{24} x_{28}^{2}x_{32}^{2}x_{36} +1/2x_{21}^{2}x_{28}^{2}x_{32}^{2}x_{36}
-x_{25}^{2}x_{26} x_{28} x_{32}^{2}x_{36} +x_{24} x_{25} x_{26} x_{28} x_{32}^{2}x_{36} -1/2x_{24}^{2}x_{26} x_{28} x_{32}^{2}x_{36}
+1/4x_{23} x_{24} x_{26} x_{28} x_{32}^{2}x_{36} +3/4x_{21} x_{24} x_{26} x_{28} x_{32}^{2}x_{36} -x_{21} x_{23} x_{26} x_{28} x_{32}^{2}x_{36}
+3/2x_{25}^{2}x_{26}^{2}x_{32}^{2}x_{36} -3/2x_{24} x_{25} x_{26}^{2}x_{32}^{2}x_{36} +3/4x_{24}^{2}x_{26}^{2}x_{32}^{2}x_{36}
-3/4x_{23} x_{24} x_{26}^{2}x_{32}^{2}x_{36} +1/2x_{23}^{2}x_{26}^{2}x_{32}^{2}x_{36} -x_{24}^{2}x_{30}^{2}x_{31} x_{32} x_{36}
+2x_{23} x_{24} x_{30}^{2}x_{31} x_{32} x_{36} -2x_{23}^{2}x_{30}^{2}x_{31} x_{32} x_{36} +x_{22} x_{23} x_{30}^{2}x_{31} x_{32} x_{36}
+2x_{21} x_{23} x_{30}^{2}x_{31} x_{32} x_{36} -3x_{21} x_{22} x_{30}^{2}x_{31} x_{32} x_{36} +2x_{24} x_{25} x_{29} x_{30} x_{31} x_{32} x_{36}
-2x_{23} x_{25} x_{29} x_{30} x_{31} x_{32} x_{36} -x_{23} x_{24} x_{29} x_{30} x_{31} x_{32} x_{36}
+2x_{23}^{2}x_{29} x_{30} x_{31} x_{32} x_{36} -x_{22} x_{23} x_{29} x_{30} x_{31} x_{32} x_{36} -2x_{21} x_{23} x_{29} x_{30} x_{31} x_{32} x_{36}
+3x_{21} x_{22} x_{29} x_{30} x_{31} x_{32} x_{36} -2x_{24} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36}
+4x_{23} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} -x_{22} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36}
-2x_{21} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} +x_{24}^{2}x_{28} x_{30} x_{31} x_{32} x_{36} -2x_{23} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36}
+1/2x_{22} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36} +x_{21} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36}
-x_{23} x_{25} x_{27} x_{30} x_{31} x_{32} x_{36} +3x_{21} x_{25} x_{27} x_{30} x_{31} x_{32} x_{36}
+1/2x_{23} x_{24} x_{27} x_{30} x_{31} x_{32} x_{36} -3/2x_{21} x_{24} x_{27} x_{30} x_{31} x_{32} x_{36}
-2x_{23} x_{25} x_{26} x_{30} x_{31} x_{32} x_{36} +3x_{22} x_{25} x_{26} x_{30} x_{31} x_{32} x_{36}
+x_{23} x_{24} x_{26} x_{30} x_{31} x_{32} x_{36} -3/2x_{22} x_{24} x_{26} x_{30} x_{31} x_{32} x_{36}
-x_{25}^{2}x_{29}^{2}x_{31} x_{32} x_{36} +x_{23} x_{25} x_{29}^{2}x_{31} x_{32} x_{36} -3/4x_{23}^{2}x_{29}^{2}x_{31} x_{32} x_{36}
+1/2x_{22} x_{23} x_{29}^{2}x_{31} x_{32} x_{36} +x_{21} x_{23} x_{29}^{2}x_{31} x_{32} x_{36} -3/2x_{21} x_{22} x_{29}^{2}x_{31} x_{32} x_{36}
+2x_{25}^{2}x_{28} x_{29} x_{31} x_{32} x_{36} -x_{24} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} -2x_{23} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36}
+1/2x_{22} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} +x_{21} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36}
+3/2x_{23} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36} -1/2x_{22} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36}
-x_{21} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36} -1/4x_{22} x_{23} x_{28} x_{29} x_{31} x_{32} x_{36}
-1/2x_{21} x_{23} x_{28} x_{29} x_{31} x_{32} x_{36} +3/2x_{21} x_{22} x_{28} x_{29} x_{31} x_{32} x_{36}
+1/2x_{23} x_{25} x_{27} x_{29} x_{31} x_{32} x_{36} -3/2x_{21} x_{25} x_{27} x_{29} x_{31} x_{32} x_{36}
-1/2x_{23} x_{24} x_{27} x_{29} x_{31} x_{32} x_{36} +3/2x_{21} x_{24} x_{27} x_{29} x_{31} x_{32} x_{36}
+1/4x_{23}^{2}x_{27} x_{29} x_{31} x_{32} x_{36} -3/4x_{21} x_{23} x_{27} x_{29} x_{31} x_{32} x_{36}
+x_{23} x_{25} x_{26} x_{29} x_{31} x_{32} x_{36} -3/2x_{22} x_{25} x_{26} x_{29} x_{31} x_{32} x_{36}
-x_{23} x_{24} x_{26} x_{29} x_{31} x_{32} x_{36} +3/2x_{22} x_{24} x_{26} x_{29} x_{31} x_{32} x_{36}
+1/2x_{23}^{2}x_{26} x_{29} x_{31} x_{32} x_{36} -3/4x_{22} x_{23} x_{26} x_{29} x_{31} x_{32} x_{36}
-2x_{25}^{2}x_{28}^{2}x_{31} x_{32} x_{36} +2x_{24} x_{25} x_{28}^{2}x_{31} x_{32} x_{36} -3/4x_{24}^{2}x_{28}^{2}x_{31} x_{32} x_{36}
+1/4x_{22} x_{24} x_{28}^{2}x_{31} x_{32} x_{36} +1/2x_{21} x_{24} x_{28}^{2}x_{31} x_{32} x_{36} -x_{21} x_{22} x_{28}^{2}x_{31} x_{32} x_{36}
+x_{25}^{2}x_{27} x_{28} x_{31} x_{32} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{31} x_{32} x_{36} +1/2x_{24}^{2}x_{27} x_{28} x_{31} x_{32} x_{36}
-1/4x_{23} x_{24} x_{27} x_{28} x_{31} x_{32} x_{36} -3/4x_{21} x_{24} x_{27} x_{28} x_{31} x_{32} x_{36}
+x_{21} x_{23} x_{27} x_{28} x_{31} x_{32} x_{36} +2x_{25}^{2}x_{26} x_{28} x_{31} x_{32} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{31} x_{32} x_{36}
+x_{24}^{2}x_{26} x_{28} x_{31} x_{32} x_{36} -1/2x_{23} x_{24} x_{26} x_{28} x_{31} x_{32} x_{36} -3/4x_{22} x_{24} x_{26} x_{28} x_{31} x_{32} x_{36}
+x_{22} x_{23} x_{26} x_{28} x_{31} x_{32} x_{36} -3x_{25}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +3x_{24} x_{25} x_{26} x_{27} x_{31} x_{32} x_{36}
-3/2x_{24}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +3/2x_{23} x_{24} x_{26} x_{27} x_{31} x_{32} x_{36}
-x_{23}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +x_{24}^{2}x_{30}^{2}x_{31}^{2}x_{36} -2x_{23} x_{24} x_{30}^{2}x_{31}^{2}x_{36}
+2x_{23}^{2}x_{30}^{2}x_{31}^{2}x_{36} -2x_{22} x_{23} x_{30}^{2}x_{31}^{2}x_{36} +3/2x_{22}^{2}x_{30}^{2}x_{31}^{2}x_{36}
-2x_{24} x_{25} x_{29} x_{30} x_{31}^{2}x_{36} +2x_{23} x_{25} x_{29} x_{30} x_{31}^{2}x_{36} +x_{23} x_{24} x_{29} x_{30} x_{31}^{2}x_{36}
-2x_{23}^{2}x_{29} x_{30} x_{31}^{2}x_{36} +2x_{22} x_{23} x_{29} x_{30} x_{31}^{2}x_{36} -3/2x_{22}^{2}x_{29} x_{30} x_{31}^{2}x_{36}
+2x_{24} x_{25} x_{28} x_{30} x_{31}^{2}x_{36} -4x_{23} x_{25} x_{28} x_{30} x_{31}^{2}x_{36} +2x_{22} x_{25} x_{28} x_{30} x_{31}^{2}x_{36}
-x_{24}^{2}x_{28} x_{30} x_{31}^{2}x_{36} +2x_{23} x_{24} x_{28} x_{30} x_{31}^{2}x_{36} -x_{22} x_{24} x_{28} x_{30} x_{31}^{2}x_{36}
+2x_{23} x_{25} x_{27} x_{30} x_{31}^{2}x_{36} -3x_{22} x_{25} x_{27} x_{30} x_{31}^{2}x_{36} -x_{23} x_{24} x_{27} x_{30} x_{31}^{2}x_{36}
+3/2x_{22} x_{24} x_{27} x_{30} x_{31}^{2}x_{36} +x_{25}^{2}x_{29}^{2}x_{31}^{2}x_{36} -x_{23} x_{25} x_{29}^{2}x_{31}^{2}x_{36}
+3/4x_{23}^{2}x_{29}^{2}x_{31}^{2}x_{36} -x_{22} x_{23} x_{29}^{2}x_{31}^{2}x_{36} +3/4x_{22}^{2}x_{29}^{2}x_{31}^{2}x_{36}
-2x_{25}^{2}x_{28} x_{29} x_{31}^{2}x_{36} +x_{24} x_{25} x_{28} x_{29} x_{31}^{2}x_{36} +2x_{23} x_{25} x_{28} x_{29} x_{31}^{2}x_{36}
-x_{22} x_{25} x_{28} x_{29} x_{31}^{2}x_{36} -3/2x_{23} x_{24} x_{28} x_{29} x_{31}^{2}x_{36} +x_{22} x_{24} x_{28} x_{29} x_{31}^{2}x_{36}
+1/2x_{22} x_{23} x_{28} x_{29} x_{31}^{2}x_{36} -3/4x_{22}^{2}x_{28} x_{29} x_{31}^{2}x_{36} -x_{23} x_{25} x_{27} x_{29} x_{31}^{2}x_{36}
+3/2x_{22} x_{25} x_{27} x_{29} x_{31}^{2}x_{36} +x_{23} x_{24} x_{27} x_{29} x_{31}^{2}x_{36} -3/2x_{22} x_{24} x_{27} x_{29} x_{31}^{2}x_{36}
-1/2x_{23}^{2}x_{27} x_{29} x_{31}^{2}x_{36} +3/4x_{22} x_{23} x_{27} x_{29} x_{31}^{2}x_{36} +2x_{25}^{2}x_{28}^{2}x_{31}^{2}x_{36}
-2x_{24} x_{25} x_{28}^{2}x_{31}^{2}x_{36} +3/4x_{24}^{2}x_{28}^{2}x_{31}^{2}x_{36} -1/2x_{22} x_{24} x_{28}^{2}x_{31}^{2}x_{36}
+1/2x_{22}^{2}x_{28}^{2}x_{31}^{2}x_{36} -2x_{25}^{2}x_{27} x_{28} x_{31}^{2}x_{36} +2x_{24} x_{25} x_{27} x_{28} x_{31}^{2}x_{36}
-x_{24}^{2}x_{27} x_{28} x_{31}^{2}x_{36} +1/2x_{23} x_{24} x_{27} x_{28} x_{31}^{2}x_{36} +3/4x_{22} x_{24} x_{27} x_{28} x_{31}^{2}x_{36}
-x_{22} x_{23} x_{27} x_{28} x_{31}^{2}x_{36} +3/2x_{25}^{2}x_{27}^{2}x_{31}^{2}x_{36} -3/2x_{24} x_{25} x_{27}^{2}x_{31}^{2}x_{36}
+3/4x_{24}^{2}x_{27}^{2}x_{31}^{2}x_{36} -3/4x_{23} x_{24} x_{27}^{2}x_{31}^{2}x_{36} +1/2x_{23}^{2}x_{27}^{2}x_{31}^{2}x_{36}
-1= 0
x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +2x_{7} x_{17} +2x_{6} x_{16} +2x_{5} x_{15} +x_{4} x_{14}
+2x_{3} x_{13} +2x_{2} x_{12} +x_{1} x_{11} -4= 0
x_{7} x_{15} +x_{6} x_{13} +x_{4} x_{12} +x_{2} x_{11} = 0
x_{9} x_{15} +x_{8} x_{13} +x_{6} x_{12} +x_{3} x_{11} = 0
x_{10} x_{15} +x_{9} x_{13} +x_{7} x_{12} +x_{5} x_{11} = 0
x_{5} x_{17} +x_{3} x_{16} +x_{2} x_{14} +x_{1} x_{12} = 0
x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +2x_{7} x_{17} +2x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14}
+x_{3} x_{13} +x_{2} x_{12} -3= 0
x_{9} x_{17} +x_{8} x_{16} +x_{6} x_{14} +x_{3} x_{12} = 0
x_{10} x_{17} +x_{9} x_{16} +x_{7} x_{14} +x_{5} x_{12} = 0
x_{5} x_{19} +x_{3} x_{18} +x_{2} x_{16} +x_{1} x_{13} = 0
x_{7} x_{19} +x_{6} x_{18} +x_{4} x_{16} +x_{2} x_{13} = 0
x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{3} x_{13} -2= 0
x_{10} x_{19} +x_{9} x_{18} +x_{7} x_{16} +x_{5} x_{13} = 0
x_{5} x_{20} +x_{3} x_{19} +x_{2} x_{17} +x_{1} x_{15} = 0
x_{7} x_{20} +x_{6} x_{19} +x_{4} x_{17} +x_{2} x_{15} = 0
x_{9} x_{20} +x_{8} x_{19} +x_{6} x_{17} +x_{3} x_{15} = 0
x_{10} x_{20} +x_{9} x_{19} +x_{7} x_{17} +x_{5} x_{15} -1= 0
x_{1} x_{24} -x_{1} x_{23} = 0
x_{2} x_{24} -x_{2} x_{22} = 0
x_{3} x_{24} -x_{3} x_{23} +x_{3} x_{22} -x_{3} x_{21} = 0
x_{4} x_{23} -x_{4} x_{22} = 0
x_{5} x_{24} -x_{5} x_{23} +x_{5} x_{21} = 0
x_{6} x_{23} -x_{6} x_{21} = 0
x_{7} x_{23} -x_{7} x_{22} +x_{7} x_{21} = 0
x_{8} x_{22} -x_{8} x_{21} = 0
x_{9} x_{22} = 0
x_{10} x_{21} = 0
x_{11} x_{24} -x_{11} x_{23} = 0
x_{12} x_{24} -x_{12} x_{22} = 0
x_{13} x_{24} -x_{13} x_{23} +x_{13} x_{22} -x_{13} x_{21} = 0
x_{14} x_{23} -x_{14} x_{22} = 0
x_{15} x_{24} -x_{15} x_{23} +x_{15} x_{21} = 0
x_{16} x_{23} -x_{16} x_{21} = 0
x_{17} x_{23} -x_{17} x_{22} +x_{17} x_{21} = 0
x_{18} x_{22} -x_{18} x_{21} = 0
x_{19} x_{22} = 0
x_{20} x_{21} = 0
x_{1} x_{29} -x_{1} x_{28} = 0
x_{2} x_{29} -x_{2} x_{27} = 0
x_{3} x_{29} -x_{3} x_{28} +x_{3} x_{27} -x_{3} x_{26} = 0
x_{4} x_{28} -x_{4} x_{27} = 0
x_{5} x_{29} -x_{5} x_{28} +x_{5} x_{26} = 0
x_{6} x_{28} -x_{6} x_{26} = 0
x_{7} x_{28} -x_{7} x_{27} +x_{7} x_{26} = 0
x_{8} x_{27} -x_{8} x_{26} = 0
x_{9} x_{27} = 0
x_{10} x_{26} = 0
x_{11} x_{29} -x_{11} x_{28} = 0
x_{12} x_{29} -x_{12} x_{27} = 0
x_{13} x_{29} -x_{13} x_{28} +x_{13} x_{27} -x_{13} x_{26} = 0
x_{14} x_{28} -x_{14} x_{27} = 0
x_{15} x_{29} -x_{15} x_{28} +x_{15} x_{26} = 0
x_{16} x_{28} -x_{16} x_{26} = 0
x_{17} x_{28} -x_{17} x_{27} +x_{17} x_{26} = 0
x_{18} x_{27} -x_{18} x_{26} = 0
x_{19} x_{27} = 0
x_{20} x_{26} = 0
x_{1} x_{34} -x_{1} x_{33} = 0
x_{2} x_{34} -x_{2} x_{32} = 0
x_{3} x_{34} -x_{3} x_{33} +x_{3} x_{32} -x_{3} x_{31} = 0
x_{4} x_{33} -x_{4} x_{32} = 0
x_{5} x_{34} -x_{5} x_{33} +x_{5} x_{31} = 0
x_{6} x_{33} -x_{6} x_{31} = 0
x_{7} x_{33} -x_{7} x_{32} +x_{7} x_{31} = 0
x_{8} x_{32} -x_{8} x_{31} = 0
x_{9} x_{32} = 0
x_{10} x_{31} = 0
x_{11} x_{34} -x_{11} x_{33} = 0
x_{12} x_{34} -x_{12} x_{32} = 0
x_{13} x_{34} -x_{13} x_{33} +x_{13} x_{32} -x_{13} x_{31} = 0
x_{14} x_{33} -x_{14} x_{32} = 0
x_{15} x_{34} -x_{15} x_{33} +x_{15} x_{31} = 0
x_{16} x_{33} -x_{16} x_{31} = 0
x_{17} x_{33} -x_{17} x_{32} +x_{17} x_{31} = 0
x_{18} x_{32} -x_{18} x_{31} = 0
x_{19} x_{32} = 0
x_{20} x_{31} = 0
The above system after transformation.
1/2x_{23}^{2}x_{29}^{2}x_{35}^{2}x_{36} -x_{22} x_{23} x_{29}^{2}x_{35}^{2}x_{36} +x_{22}^{2}x_{29}^{2}x_{35}^{2}x_{36}
-x_{21} x_{22} x_{29}^{2}x_{35}^{2}x_{36} +x_{21}^{2}x_{29}^{2}x_{35}^{2}x_{36} -x_{23} x_{24} x_{28} x_{29} x_{35}^{2}x_{36}
+x_{22} x_{24} x_{28} x_{29} x_{35}^{2}x_{36} +x_{22} x_{23} x_{28} x_{29} x_{35}^{2}x_{36} -2x_{22}^{2}x_{28} x_{29} x_{35}^{2}x_{36}
+2x_{21} x_{22} x_{28} x_{29} x_{35}^{2}x_{36} -2x_{21}^{2}x_{28} x_{29} x_{35}^{2}x_{36} +x_{23} x_{24} x_{27} x_{29} x_{35}^{2}x_{36}
-2x_{22} x_{24} x_{27} x_{29} x_{35}^{2}x_{36} +x_{21} x_{24} x_{27} x_{29} x_{35}^{2}x_{36} -x_{23}^{2}x_{27} x_{29} x_{35}^{2}x_{36}
+2x_{22} x_{23} x_{27} x_{29} x_{35}^{2}x_{36} -x_{21} x_{23} x_{27} x_{29} x_{35}^{2}x_{36} +x_{22} x_{24} x_{26} x_{29} x_{35}^{2}x_{36}
-2x_{21} x_{24} x_{26} x_{29} x_{35}^{2}x_{36} -x_{22} x_{23} x_{26} x_{29} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{26} x_{29} x_{35}^{2}x_{36}
+1/2x_{24}^{2}x_{28}^{2}x_{35}^{2}x_{36} -x_{22} x_{24} x_{28}^{2}x_{35}^{2}x_{36} +3/2x_{22}^{2}x_{28}^{2}x_{35}^{2}x_{36}
-2x_{21} x_{22} x_{28}^{2}x_{35}^{2}x_{36} +2x_{21}^{2}x_{28}^{2}x_{35}^{2}x_{36} -x_{24}^{2}x_{27} x_{28} x_{35}^{2}x_{36}
+x_{23} x_{24} x_{27} x_{28} x_{35}^{2}x_{36} +2x_{22} x_{24} x_{27} x_{28} x_{35}^{2}x_{36} -x_{21} x_{24} x_{27} x_{28} x_{35}^{2}x_{36}
-3x_{22} x_{23} x_{27} x_{28} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{27} x_{28} x_{35}^{2}x_{36} +x_{21} x_{22} x_{27} x_{28} x_{35}^{2}x_{36}
-2x_{21}^{2}x_{27} x_{28} x_{35}^{2}x_{36} -x_{22} x_{24} x_{26} x_{28} x_{35}^{2}x_{36} +2x_{21} x_{24} x_{26} x_{28} x_{35}^{2}x_{36}
+2x_{22} x_{23} x_{26} x_{28} x_{35}^{2}x_{36} -4x_{21} x_{23} x_{26} x_{28} x_{35}^{2}x_{36} -x_{22}^{2}x_{26} x_{28} x_{35}^{2}x_{36}
+2x_{21} x_{22} x_{26} x_{28} x_{35}^{2}x_{36} +x_{24}^{2}x_{27}^{2}x_{35}^{2}x_{36} -2x_{23} x_{24} x_{27}^{2}x_{35}^{2}x_{36}
+3/2x_{23}^{2}x_{27}^{2}x_{35}^{2}x_{36} -x_{21} x_{23} x_{27}^{2}x_{35}^{2}x_{36} +3/2x_{21}^{2}x_{27}^{2}x_{35}^{2}x_{36}
-x_{24}^{2}x_{26} x_{27} x_{35}^{2}x_{36} +2x_{23} x_{24} x_{26} x_{27} x_{35}^{2}x_{36} -2x_{23}^{2}x_{26} x_{27} x_{35}^{2}x_{36}
+x_{22} x_{23} x_{26} x_{27} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{26} x_{27} x_{35}^{2}x_{36} -3x_{21} x_{22} x_{26} x_{27} x_{35}^{2}x_{36}
+x_{24}^{2}x_{26}^{2}x_{35}^{2}x_{36} -2x_{23} x_{24} x_{26}^{2}x_{35}^{2}x_{36} +2x_{23}^{2}x_{26}^{2}x_{35}^{2}x_{36}
-2x_{22} x_{23} x_{26}^{2}x_{35}^{2}x_{36} +3/2x_{22}^{2}x_{26}^{2}x_{35}^{2}x_{36} -x_{23}^{2}x_{29} x_{30} x_{34} x_{35} x_{36}
+2x_{22} x_{23} x_{29} x_{30} x_{34} x_{35} x_{36} -2x_{22}^{2}x_{29} x_{30} x_{34} x_{35} x_{36} +2x_{21} x_{22} x_{29} x_{30} x_{34} x_{35} x_{36}
-2x_{21}^{2}x_{29} x_{30} x_{34} x_{35} x_{36} +x_{23} x_{24} x_{28} x_{30} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{28} x_{30} x_{34} x_{35} x_{36}
-x_{22} x_{23} x_{28} x_{30} x_{34} x_{35} x_{36} +2x_{22}^{2}x_{28} x_{30} x_{34} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{34} x_{35} x_{36}
+2x_{21}^{2}x_{28} x_{30} x_{34} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36} +2x_{22} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36}
-x_{21} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36} +x_{23}^{2}x_{27} x_{30} x_{34} x_{35} x_{36} -2x_{22} x_{23} x_{27} x_{30} x_{34} x_{35} x_{36}
+x_{21} x_{23} x_{27} x_{30} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{26} x_{30} x_{34} x_{35} x_{36} +2x_{21} x_{24} x_{26} x_{30} x_{34} x_{35} x_{36}
+x_{22} x_{23} x_{26} x_{30} x_{34} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{34} x_{35} x_{36}
+x_{23} x_{25} x_{28} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{25} x_{28} x_{29} x_{34} x_{35} x_{36} -1/2x_{22} x_{23} x_{28} x_{29} x_{34} x_{35} x_{36}
+x_{22}^{2}x_{28} x_{29} x_{34} x_{35} x_{36} -x_{21} x_{22} x_{28} x_{29} x_{34} x_{35} x_{36} +x_{21}^{2}x_{28} x_{29} x_{34} x_{35} x_{36}
-x_{23} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36} +2x_{22} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36}
-x_{21} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36} +1/2x_{23}^{2}x_{27} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{23} x_{27} x_{29} x_{34} x_{35} x_{36}
+1/2x_{21} x_{23} x_{27} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{25} x_{26} x_{29} x_{34} x_{35} x_{36}
+2x_{21} x_{25} x_{26} x_{29} x_{34} x_{35} x_{36} +1/2x_{22} x_{23} x_{26} x_{29} x_{34} x_{35} x_{36}
-x_{21} x_{23} x_{26} x_{29} x_{34} x_{35} x_{36} -x_{24} x_{25} x_{28}^{2}x_{34} x_{35} x_{36} +x_{22} x_{25} x_{28}^{2}x_{34} x_{35} x_{36}
+1/2x_{22} x_{24} x_{28}^{2}x_{34} x_{35} x_{36} -3/2x_{22}^{2}x_{28}^{2}x_{34} x_{35} x_{36} +2x_{21} x_{22} x_{28}^{2}x_{34} x_{35} x_{36}
-2x_{21}^{2}x_{28}^{2}x_{34} x_{35} x_{36} +2x_{24} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{23} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36}
-2x_{22} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} +x_{21} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36}
-1/2x_{23} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36}
+1/2x_{21} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36} +3x_{22} x_{23} x_{27} x_{28} x_{34} x_{35} x_{36}
-2x_{21} x_{23} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{21} x_{22} x_{27} x_{28} x_{34} x_{35} x_{36}
+2x_{21}^{2}x_{27} x_{28} x_{34} x_{35} x_{36} +x_{22} x_{25} x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{28} x_{34} x_{35} x_{36}
+1/2x_{22} x_{24} x_{26} x_{28} x_{34} x_{35} x_{36} -x_{21} x_{24} x_{26} x_{28} x_{34} x_{35} x_{36}
-2x_{22} x_{23} x_{26} x_{28} x_{34} x_{35} x_{36} +4x_{21} x_{23} x_{26} x_{28} x_{34} x_{35} x_{36}
+x_{22}^{2}x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{21} x_{22} x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{24} x_{25} x_{27}^{2}x_{34} x_{35} x_{36}
+2x_{23} x_{25} x_{27}^{2}x_{34} x_{35} x_{36} +x_{23} x_{24} x_{27}^{2}x_{34} x_{35} x_{36} -3/2x_{23}^{2}x_{27}^{2}x_{34} x_{35} x_{36}
+x_{21} x_{23} x_{27}^{2}x_{34} x_{35} x_{36} -3/2x_{21}^{2}x_{27}^{2}x_{34} x_{35} x_{36} +2x_{24} x_{25} x_{26} x_{27} x_{34} x_{35} x_{36}
-2x_{23} x_{25} x_{26} x_{27} x_{34} x_{35} x_{36} -x_{23} x_{24} x_{26} x_{27} x_{34} x_{35} x_{36}
+2x_{23}^{2}x_{26} x_{27} x_{34} x_{35} x_{36} -x_{22} x_{23} x_{26} x_{27} x_{34} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{27} x_{34} x_{35} x_{36}
+3x_{21} x_{22} x_{26} x_{27} x_{34} x_{35} x_{36} -2x_{24} x_{25} x_{26}^{2}x_{34} x_{35} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{34} x_{35} x_{36}
+x_{23} x_{24} x_{26}^{2}x_{34} x_{35} x_{36} -2x_{23}^{2}x_{26}^{2}x_{34} x_{35} x_{36} +2x_{22} x_{23} x_{26}^{2}x_{34} x_{35} x_{36}
-3/2x_{22}^{2}x_{26}^{2}x_{34} x_{35} x_{36} +x_{23} x_{24} x_{29} x_{30} x_{33} x_{35} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{33} x_{35} x_{36}
-x_{22} x_{23} x_{29} x_{30} x_{33} x_{35} x_{36} +2x_{22}^{2}x_{29} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{29} x_{30} x_{33} x_{35} x_{36}
+2x_{21}^{2}x_{29} x_{30} x_{33} x_{35} x_{36} -x_{24}^{2}x_{28} x_{30} x_{33} x_{35} x_{36} +2x_{22} x_{24} x_{28} x_{30} x_{33} x_{35} x_{36}
-3x_{22}^{2}x_{28} x_{30} x_{33} x_{35} x_{36} +4x_{21} x_{22} x_{28} x_{30} x_{33} x_{35} x_{36} -4x_{21}^{2}x_{28} x_{30} x_{33} x_{35} x_{36}
+x_{24}^{2}x_{27} x_{30} x_{33} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36} -2x_{22} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36}
+x_{21} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36} +3x_{22} x_{23} x_{27} x_{30} x_{33} x_{35} x_{36}
-2x_{21} x_{23} x_{27} x_{30} x_{33} x_{35} x_{36} -x_{21} x_{22} x_{27} x_{30} x_{33} x_{35} x_{36}
+2x_{21}^{2}x_{27} x_{30} x_{33} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{24} x_{26} x_{30} x_{33} x_{35} x_{36}
-2x_{22} x_{23} x_{26} x_{30} x_{33} x_{35} x_{36} +4x_{21} x_{23} x_{26} x_{30} x_{33} x_{35} x_{36}
+x_{22}^{2}x_{26} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{26} x_{30} x_{33} x_{35} x_{36} -x_{23} x_{25} x_{29}^{2}x_{33} x_{35} x_{36}
+x_{22} x_{25} x_{29}^{2}x_{33} x_{35} x_{36} +1/2x_{22} x_{23} x_{29}^{2}x_{33} x_{35} x_{36} -x_{22}^{2}x_{29}^{2}x_{33} x_{35} x_{36}
+x_{21} x_{22} x_{29}^{2}x_{33} x_{35} x_{36} -x_{21}^{2}x_{29}^{2}x_{33} x_{35} x_{36} +x_{24} x_{25} x_{28} x_{29} x_{33} x_{35} x_{36}
-x_{22} x_{25} x_{28} x_{29} x_{33} x_{35} x_{36} -1/2x_{22} x_{24} x_{28} x_{29} x_{33} x_{35} x_{36}
+3/2x_{22}^{2}x_{28} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{29} x_{33} x_{35} x_{36} +2x_{21}^{2}x_{28} x_{29} x_{33} x_{35} x_{36}
-x_{24} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} +2x_{23} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36}
-2x_{22} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} +x_{21} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36}
-1/2x_{23} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36} +2x_{22} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36}
-x_{21} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36} -3/2x_{22} x_{23} x_{27} x_{29} x_{33} x_{35} x_{36}
+x_{21} x_{23} x_{27} x_{29} x_{33} x_{35} x_{36} +1/2x_{21} x_{22} x_{27} x_{29} x_{33} x_{35} x_{36}
-x_{21}^{2}x_{27} x_{29} x_{33} x_{35} x_{36} +x_{22} x_{25} x_{26} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{29} x_{33} x_{35} x_{36}
-x_{22} x_{24} x_{26} x_{29} x_{33} x_{35} x_{36} +2x_{21} x_{24} x_{26} x_{29} x_{33} x_{35} x_{36}
+x_{22} x_{23} x_{26} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{29} x_{33} x_{35} x_{36}
-1/2x_{22}^{2}x_{26} x_{29} x_{33} x_{35} x_{36} +x_{21} x_{22} x_{26} x_{29} x_{33} x_{35} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36}
+3x_{22} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36}
+1/2x_{24}^{2}x_{27} x_{28} x_{33} x_{35} x_{36} -3/2x_{22} x_{24} x_{27} x_{28} x_{33} x_{35} x_{36}
+x_{21} x_{24} x_{27} x_{28} x_{33} x_{35} x_{36} -2x_{22} x_{25} x_{26} x_{28} x_{33} x_{35} x_{36}
+4x_{21} x_{25} x_{26} x_{28} x_{33} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{33} x_{35} x_{36}
-2x_{21} x_{24} x_{26} x_{28} x_{33} x_{35} x_{36} +2x_{24} x_{25} x_{27}^{2}x_{33} x_{35} x_{36} -3x_{23} x_{25} x_{27}^{2}x_{33} x_{35} x_{36}
+x_{21} x_{25} x_{27}^{2}x_{33} x_{35} x_{36} -x_{24}^{2}x_{27}^{2}x_{33} x_{35} x_{36} +3/2x_{23} x_{24} x_{27}^{2}x_{33} x_{35} x_{36}
-1/2x_{21} x_{24} x_{27}^{2}x_{33} x_{35} x_{36} -2x_{24} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} +4x_{23} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36}
-x_{22} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36}
+x_{24}^{2}x_{26} x_{27} x_{33} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36} +1/2x_{22} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36}
+x_{21} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36} +2x_{24} x_{25} x_{26}^{2}x_{33} x_{35} x_{36} -4x_{23} x_{25} x_{26}^{2}x_{33} x_{35} x_{36}
+2x_{22} x_{25} x_{26}^{2}x_{33} x_{35} x_{36} -x_{24}^{2}x_{26}^{2}x_{33} x_{35} x_{36} +2x_{23} x_{24} x_{26}^{2}x_{33} x_{35} x_{36}
-x_{22} x_{24} x_{26}^{2}x_{33} x_{35} x_{36} -x_{23} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36} +2x_{22} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36}
-x_{21} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36} +x_{23}^{2}x_{29} x_{30} x_{32} x_{35} x_{36} -2x_{22} x_{23} x_{29} x_{30} x_{32} x_{35} x_{36}
+x_{21} x_{23} x_{29} x_{30} x_{32} x_{35} x_{36} +x_{24}^{2}x_{28} x_{30} x_{32} x_{35} x_{36} -x_{23} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36}
-2x_{22} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36} +x_{21} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36}
+3x_{22} x_{23} x_{28} x_{30} x_{32} x_{35} x_{36} -2x_{21} x_{23} x_{28} x_{30} x_{32} x_{35} x_{36}
-x_{21} x_{22} x_{28} x_{30} x_{32} x_{35} x_{36} +2x_{21}^{2}x_{28} x_{30} x_{32} x_{35} x_{36} -2x_{24}^{2}x_{27} x_{30} x_{32} x_{35} x_{36}
+4x_{23} x_{24} x_{27} x_{30} x_{32} x_{35} x_{36} -3x_{23}^{2}x_{27} x_{30} x_{32} x_{35} x_{36} +2x_{21} x_{23} x_{27} x_{30} x_{32} x_{35} x_{36}
-3x_{21}^{2}x_{27} x_{30} x_{32} x_{35} x_{36} +x_{24}^{2}x_{26} x_{30} x_{32} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{30} x_{32} x_{35} x_{36}
+2x_{23}^{2}x_{26} x_{30} x_{32} x_{35} x_{36} -x_{22} x_{23} x_{26} x_{30} x_{32} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{32} x_{35} x_{36}
+3x_{21} x_{22} x_{26} x_{30} x_{32} x_{35} x_{36} +x_{23} x_{25} x_{29}^{2}x_{32} x_{35} x_{36} -2x_{22} x_{25} x_{29}^{2}x_{32} x_{35} x_{36}
+x_{21} x_{25} x_{29}^{2}x_{32} x_{35} x_{36} -1/2x_{23}^{2}x_{29}^{2}x_{32} x_{35} x_{36} +x_{22} x_{23} x_{29}^{2}x_{32} x_{35} x_{36}
-1/2x_{21} x_{23} x_{29}^{2}x_{32} x_{35} x_{36} -x_{24} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{23} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36}
+4x_{22} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} -2x_{21} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36}
+x_{23} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{22} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36} +1/2x_{21} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36}
-3/2x_{22} x_{23} x_{28} x_{29} x_{32} x_{35} x_{36} +x_{21} x_{23} x_{28} x_{29} x_{32} x_{35} x_{36}
+1/2x_{21} x_{22} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{21}^{2}x_{28} x_{29} x_{32} x_{35} x_{36} +2x_{24} x_{25} x_{27} x_{29} x_{32} x_{35} x_{36}
-2x_{23} x_{25} x_{27} x_{29} x_{32} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{29} x_{32} x_{35} x_{36}
+3/2x_{23}^{2}x_{27} x_{29} x_{32} x_{35} x_{36} -x_{21} x_{23} x_{27} x_{29} x_{32} x_{35} x_{36} +3/2x_{21}^{2}x_{27} x_{29} x_{32} x_{35} x_{36}
-x_{24} x_{25} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{23} x_{25} x_{26} x_{29} x_{32} x_{35} x_{36} +1/2x_{23} x_{24} x_{26} x_{29} x_{32} x_{35} x_{36}
-x_{23}^{2}x_{26} x_{29} x_{32} x_{35} x_{36} +1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{21} x_{23} x_{26} x_{29} x_{32} x_{35} x_{36}
-3/2x_{21} x_{22} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{24} x_{25} x_{28}^{2}x_{32} x_{35} x_{36} -3x_{22} x_{25} x_{28}^{2}x_{32} x_{35} x_{36}
+2x_{21} x_{25} x_{28}^{2}x_{32} x_{35} x_{36} -1/2x_{24}^{2}x_{28}^{2}x_{32} x_{35} x_{36} +3/2x_{22} x_{24} x_{28}^{2}x_{32} x_{35} x_{36}
-x_{21} x_{24} x_{28}^{2}x_{32} x_{35} x_{36} -2x_{24} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36} +3x_{23} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36}
-x_{21} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36} +x_{24}^{2}x_{27} x_{28} x_{32} x_{35} x_{36} -3/2x_{23} x_{24} x_{27} x_{28} x_{32} x_{35} x_{36}
+1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{35} x_{36} +x_{24} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36}
-2x_{23} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} +2x_{22} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36}
-2x_{21} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} -1/2x_{24}^{2}x_{26} x_{28} x_{32} x_{35} x_{36} +x_{23} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36}
-x_{22} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36} +x_{21} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36} -x_{23} x_{25} x_{26} x_{27} x_{32} x_{35} x_{36}
+3x_{21} x_{25} x_{26} x_{27} x_{32} x_{35} x_{36} +1/2x_{23} x_{24} x_{26} x_{27} x_{32} x_{35} x_{36}
-3/2x_{21} x_{24} x_{26} x_{27} x_{32} x_{35} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{32} x_{35} x_{36} -3x_{22} x_{25} x_{26}^{2}x_{32} x_{35} x_{36}
-x_{23} x_{24} x_{26}^{2}x_{32} x_{35} x_{36} +3/2x_{22} x_{24} x_{26}^{2}x_{32} x_{35} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{31} x_{35} x_{36}
+2x_{21} x_{24} x_{29} x_{30} x_{31} x_{35} x_{36} +x_{22} x_{23} x_{29} x_{30} x_{31} x_{35} x_{36}
-2x_{21} x_{23} x_{29} x_{30} x_{31} x_{35} x_{36} +x_{22} x_{24} x_{28} x_{30} x_{31} x_{35} x_{36}
-2x_{21} x_{24} x_{28} x_{30} x_{31} x_{35} x_{36} -2x_{22} x_{23} x_{28} x_{30} x_{31} x_{35} x_{36}
+4x_{21} x_{23} x_{28} x_{30} x_{31} x_{35} x_{36} +x_{22}^{2}x_{28} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{31} x_{35} x_{36}
+x_{24}^{2}x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{23} x_{24} x_{27} x_{30} x_{31} x_{35} x_{36} +2x_{23}^{2}x_{27} x_{30} x_{31} x_{35} x_{36}
-x_{22} x_{23} x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{23} x_{27} x_{30} x_{31} x_{35} x_{36}
+3x_{21} x_{22} x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{24}^{2}x_{26} x_{30} x_{31} x_{35} x_{36} +4x_{23} x_{24} x_{26} x_{30} x_{31} x_{35} x_{36}
-4x_{23}^{2}x_{26} x_{30} x_{31} x_{35} x_{36} +4x_{22} x_{23} x_{26} x_{30} x_{31} x_{35} x_{36} -3x_{22}^{2}x_{26} x_{30} x_{31} x_{35} x_{36}
+x_{22} x_{25} x_{29}^{2}x_{31} x_{35} x_{36} -2x_{21} x_{25} x_{29}^{2}x_{31} x_{35} x_{36} -1/2x_{22} x_{23} x_{29}^{2}x_{31} x_{35} x_{36}
+x_{21} x_{23} x_{29}^{2}x_{31} x_{35} x_{36} -2x_{22} x_{25} x_{28} x_{29} x_{31} x_{35} x_{36} +4x_{21} x_{25} x_{28} x_{29} x_{31} x_{35} x_{36}
+1/2x_{22} x_{24} x_{28} x_{29} x_{31} x_{35} x_{36} -x_{21} x_{24} x_{28} x_{29} x_{31} x_{35} x_{36}
+x_{22} x_{23} x_{28} x_{29} x_{31} x_{35} x_{36} -2x_{21} x_{23} x_{28} x_{29} x_{31} x_{35} x_{36}
-1/2x_{22}^{2}x_{28} x_{29} x_{31} x_{35} x_{36} +x_{21} x_{22} x_{28} x_{29} x_{31} x_{35} x_{36} -x_{24} x_{25} x_{27} x_{29} x_{31} x_{35} x_{36}
+x_{23} x_{25} x_{27} x_{29} x_{31} x_{35} x_{36} +1/2x_{23} x_{24} x_{27} x_{29} x_{31} x_{35} x_{36}
-x_{23}^{2}x_{27} x_{29} x_{31} x_{35} x_{36} +1/2x_{22} x_{23} x_{27} x_{29} x_{31} x_{35} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{31} x_{35} x_{36}
-3/2x_{21} x_{22} x_{27} x_{29} x_{31} x_{35} x_{36} +2x_{24} x_{25} x_{26} x_{29} x_{31} x_{35} x_{36}
-2x_{23} x_{25} x_{26} x_{29} x_{31} x_{35} x_{36} -x_{23} x_{24} x_{26} x_{29} x_{31} x_{35} x_{36}
+2x_{23}^{2}x_{26} x_{29} x_{31} x_{35} x_{36} -2x_{22} x_{23} x_{26} x_{29} x_{31} x_{35} x_{36} +3/2x_{22}^{2}x_{26} x_{29} x_{31} x_{35} x_{36}
+2x_{22} x_{25} x_{28}^{2}x_{31} x_{35} x_{36} -4x_{21} x_{25} x_{28}^{2}x_{31} x_{35} x_{36} -x_{22} x_{24} x_{28}^{2}x_{31} x_{35} x_{36}
+2x_{21} x_{24} x_{28}^{2}x_{31} x_{35} x_{36} +x_{24} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} -2x_{23} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36}
-x_{22} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} +4x_{21} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36}
-1/2x_{24}^{2}x_{27} x_{28} x_{31} x_{35} x_{36} +x_{23} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36} +1/2x_{22} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36}
-2x_{21} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36}
+4x_{23} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36} -2x_{22} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36}
+x_{24}^{2}x_{26} x_{28} x_{31} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{28} x_{31} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{31} x_{35} x_{36}
+x_{23} x_{25} x_{27}^{2}x_{31} x_{35} x_{36} -3x_{21} x_{25} x_{27}^{2}x_{31} x_{35} x_{36} -1/2x_{23} x_{24} x_{27}^{2}x_{31} x_{35} x_{36}
+3/2x_{21} x_{24} x_{27}^{2}x_{31} x_{35} x_{36} -2x_{23} x_{25} x_{26} x_{27} x_{31} x_{35} x_{36} +3x_{22} x_{25} x_{26} x_{27} x_{31} x_{35} x_{36}
+x_{23} x_{24} x_{26} x_{27} x_{31} x_{35} x_{36} -3/2x_{22} x_{24} x_{26} x_{27} x_{31} x_{35} x_{36}
+1/2x_{23}^{2}x_{30}^{2}x_{34}^{2}x_{36} -x_{22} x_{23} x_{30}^{2}x_{34}^{2}x_{36} +x_{22}^{2}x_{30}^{2}x_{34}^{2}x_{36}
-x_{21} x_{22} x_{30}^{2}x_{34}^{2}x_{36} +x_{21}^{2}x_{30}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{28} x_{30} x_{34}^{2}x_{36}
+x_{22} x_{25} x_{28} x_{30} x_{34}^{2}x_{36} +1/2x_{22} x_{23} x_{28} x_{30} x_{34}^{2}x_{36} -x_{22}^{2}x_{28} x_{30} x_{34}^{2}x_{36}
+x_{21} x_{22} x_{28} x_{30} x_{34}^{2}x_{36} -x_{21}^{2}x_{28} x_{30} x_{34}^{2}x_{36} +x_{23} x_{25} x_{27} x_{30} x_{34}^{2}x_{36}
-2x_{22} x_{25} x_{27} x_{30} x_{34}^{2}x_{36} +x_{21} x_{25} x_{27} x_{30} x_{34}^{2}x_{36} -1/2x_{23}^{2}x_{27} x_{30} x_{34}^{2}x_{36}
+x_{22} x_{23} x_{27} x_{30} x_{34}^{2}x_{36} -1/2x_{21} x_{23} x_{27} x_{30} x_{34}^{2}x_{36} +x_{22} x_{25} x_{26} x_{30} x_{34}^{2}x_{36}
-2x_{21} x_{25} x_{26} x_{30} x_{34}^{2}x_{36} -1/2x_{22} x_{23} x_{26} x_{30} x_{34}^{2}x_{36} +x_{21} x_{23} x_{26} x_{30} x_{34}^{2}x_{36}
+1/2x_{25}^{2}x_{28}^{2}x_{34}^{2}x_{36} -1/2x_{22} x_{25} x_{28}^{2}x_{34}^{2}x_{36} +1/2x_{22}^{2}x_{28}^{2}x_{34}^{2}x_{36}
-3/4x_{21} x_{22} x_{28}^{2}x_{34}^{2}x_{36} +3/4x_{21}^{2}x_{28}^{2}x_{34}^{2}x_{36} -x_{25}^{2}x_{27} x_{28} x_{34}^{2}x_{36}
+1/2x_{23} x_{25} x_{27} x_{28} x_{34}^{2}x_{36} +x_{22} x_{25} x_{27} x_{28} x_{34}^{2}x_{36} -1/2x_{21} x_{25} x_{27} x_{28} x_{34}^{2}x_{36}
-x_{22} x_{23} x_{27} x_{28} x_{34}^{2}x_{36} +3/4x_{21} x_{23} x_{27} x_{28} x_{34}^{2}x_{36} +1/2x_{21} x_{22} x_{27} x_{28} x_{34}^{2}x_{36}
-x_{21}^{2}x_{27} x_{28} x_{34}^{2}x_{36} -1/2x_{22} x_{25} x_{26} x_{28} x_{34}^{2}x_{36} +x_{21} x_{25} x_{26} x_{28} x_{34}^{2}x_{36}
+3/4x_{22} x_{23} x_{26} x_{28} x_{34}^{2}x_{36} -3/2x_{21} x_{23} x_{26} x_{28} x_{34}^{2}x_{36} -1/2x_{22}^{2}x_{26} x_{28} x_{34}^{2}x_{36}
+x_{21} x_{22} x_{26} x_{28} x_{34}^{2}x_{36} +x_{25}^{2}x_{27}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{27}^{2}x_{34}^{2}x_{36}
+1/2x_{23}^{2}x_{27}^{2}x_{34}^{2}x_{36} -1/2x_{21} x_{23} x_{27}^{2}x_{34}^{2}x_{36} +3/4x_{21}^{2}x_{27}^{2}x_{34}^{2}x_{36}
-x_{25}^{2}x_{26} x_{27} x_{34}^{2}x_{36} +x_{23} x_{25} x_{26} x_{27} x_{34}^{2}x_{36} -3/4x_{23}^{2}x_{26} x_{27} x_{34}^{2}x_{36}
+1/2x_{22} x_{23} x_{26} x_{27} x_{34}^{2}x_{36} +x_{21} x_{23} x_{26} x_{27} x_{34}^{2}x_{36} -3/2x_{21} x_{22} x_{26} x_{27} x_{34}^{2}x_{36}
+x_{25}^{2}x_{26}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{26}^{2}x_{34}^{2}x_{36} +3/4x_{23}^{2}x_{26}^{2}x_{34}^{2}x_{36}
-x_{22} x_{23} x_{26}^{2}x_{34}^{2}x_{36} +3/4x_{22}^{2}x_{26}^{2}x_{34}^{2}x_{36} -x_{23} x_{24} x_{30}^{2}x_{33} x_{34} x_{36}
+x_{22} x_{24} x_{30}^{2}x_{33} x_{34} x_{36} +x_{22} x_{23} x_{30}^{2}x_{33} x_{34} x_{36} -2x_{22}^{2}x_{30}^{2}x_{33} x_{34} x_{36}
+2x_{21} x_{22} x_{30}^{2}x_{33} x_{34} x_{36} -2x_{21}^{2}x_{30}^{2}x_{33} x_{34} x_{36} +x_{23} x_{25} x_{29} x_{30} x_{33} x_{34} x_{36}
-x_{22} x_{25} x_{29} x_{30} x_{33} x_{34} x_{36} -1/2x_{22} x_{23} x_{29} x_{30} x_{33} x_{34} x_{36}
+x_{22}^{2}x_{29} x_{30} x_{33} x_{34} x_{36} -x_{21} x_{22} x_{29} x_{30} x_{33} x_{34} x_{36} +x_{21}^{2}x_{29} x_{30} x_{33} x_{34} x_{36}
+x_{24} x_{25} x_{28} x_{30} x_{33} x_{34} x_{36} -x_{22} x_{25} x_{28} x_{30} x_{33} x_{34} x_{36} -1/2x_{22} x_{24} x_{28} x_{30} x_{33} x_{34} x_{36}
+3/2x_{22}^{2}x_{28} x_{30} x_{33} x_{34} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{33} x_{34} x_{36} +2x_{21}^{2}x_{28} x_{30} x_{33} x_{34} x_{36}
-x_{24} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} -x_{23} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} +4x_{22} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36}
-2x_{21} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} +x_{23} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36}
-x_{22} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36} +1/2x_{21} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36}
-3/2x_{22} x_{23} x_{27} x_{30} x_{33} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{30} x_{33} x_{34} x_{36}
+1/2x_{21} x_{22} x_{27} x_{30} x_{33} x_{34} x_{36} -x_{21}^{2}x_{27} x_{30} x_{33} x_{34} x_{36} -2x_{22} x_{25} x_{26} x_{30} x_{33} x_{34} x_{36}
+4x_{21} x_{25} x_{26} x_{30} x_{33} x_{34} x_{36} +1/2x_{22} x_{24} x_{26} x_{30} x_{33} x_{34} x_{36}
-x_{21} x_{24} x_{26} x_{30} x_{33} x_{34} x_{36} +x_{22} x_{23} x_{26} x_{30} x_{33} x_{34} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{33} x_{34} x_{36}
-1/2x_{22}^{2}x_{26} x_{30} x_{33} x_{34} x_{36} +x_{21} x_{22} x_{26} x_{30} x_{33} x_{34} x_{36} -x_{25}^{2}x_{28} x_{29} x_{33} x_{34} x_{36}
+x_{22} x_{25} x_{28} x_{29} x_{33} x_{34} x_{36} -x_{22}^{2}x_{28} x_{29} x_{33} x_{34} x_{36} +3/2x_{21} x_{22} x_{28} x_{29} x_{33} x_{34} x_{36}
-3/2x_{21}^{2}x_{28} x_{29} x_{33} x_{34} x_{36} +x_{25}^{2}x_{27} x_{29} x_{33} x_{34} x_{36} -1/2x_{23} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36}
-x_{22} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36} +1/2x_{21} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36}
+x_{22} x_{23} x_{27} x_{29} x_{33} x_{34} x_{36} -3/4x_{21} x_{23} x_{27} x_{29} x_{33} x_{34} x_{36}
-1/2x_{21} x_{22} x_{27} x_{29} x_{33} x_{34} x_{36} +x_{21}^{2}x_{27} x_{29} x_{33} x_{34} x_{36} +1/2x_{22} x_{25} x_{26} x_{29} x_{33} x_{34} x_{36}
-x_{21} x_{25} x_{26} x_{29} x_{33} x_{34} x_{36} -3/4x_{22} x_{23} x_{26} x_{29} x_{33} x_{34} x_{36}
+3/2x_{21} x_{23} x_{26} x_{29} x_{33} x_{34} x_{36} +1/2x_{22}^{2}x_{26} x_{29} x_{33} x_{34} x_{36}
-x_{21} x_{22} x_{26} x_{29} x_{33} x_{34} x_{36} +x_{25}^{2}x_{27} x_{28} x_{33} x_{34} x_{36} -1/2x_{24} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36}
-3/2x_{22} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36} +x_{21} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36}
+x_{22} x_{24} x_{27} x_{28} x_{33} x_{34} x_{36} -3/4x_{21} x_{24} x_{27} x_{28} x_{33} x_{34} x_{36}
-1/4x_{21} x_{22} x_{27} x_{28} x_{33} x_{34} x_{36} +1/2x_{21}^{2}x_{27} x_{28} x_{33} x_{34} x_{36}
+x_{22} x_{25} x_{26} x_{28} x_{33} x_{34} x_{36} -2x_{21} x_{25} x_{26} x_{28} x_{33} x_{34} x_{36}
-3/4x_{22} x_{24} x_{26} x_{28} x_{33} x_{34} x_{36} +3/2x_{21} x_{24} x_{26} x_{28} x_{33} x_{34} x_{36}
+1/4x_{22}^{2}x_{26} x_{28} x_{33} x_{34} x_{36} -1/2x_{21} x_{22} x_{26} x_{28} x_{33} x_{34} x_{36}
-2x_{25}^{2}x_{27}^{2}x_{33} x_{34} x_{36} +x_{24} x_{25} x_{27}^{2}x_{33} x_{34} x_{36} +3/2x_{23} x_{25} x_{27}^{2}x_{33} x_{34} x_{36}
-1/2x_{21} x_{25} x_{27}^{2}x_{33} x_{34} x_{36} -x_{23} x_{24} x_{27}^{2}x_{33} x_{34} x_{36} +1/2x_{21} x_{24} x_{27}^{2}x_{33} x_{34} x_{36}
+1/4x_{21} x_{23} x_{27}^{2}x_{33} x_{34} x_{36} -3/4x_{21}^{2}x_{27}^{2}x_{33} x_{34} x_{36} +2x_{25}^{2}x_{26} x_{27} x_{33} x_{34} x_{36}
-x_{24} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} -2x_{23} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36}
+1/2x_{22} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} +x_{21} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36}
+3/2x_{23} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36} -1/2x_{22} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36}
-x_{21} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36} -1/4x_{22} x_{23} x_{26} x_{27} x_{33} x_{34} x_{36}
-1/2x_{21} x_{23} x_{26} x_{27} x_{33} x_{34} x_{36} +3/2x_{21} x_{22} x_{26} x_{27} x_{33} x_{34} x_{36}
-2x_{25}^{2}x_{26}^{2}x_{33} x_{34} x_{36} +x_{24} x_{25} x_{26}^{2}x_{33} x_{34} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{33} x_{34} x_{36}
-x_{22} x_{25} x_{26}^{2}x_{33} x_{34} x_{36} -3/2x_{23} x_{24} x_{26}^{2}x_{33} x_{34} x_{36} +x_{22} x_{24} x_{26}^{2}x_{33} x_{34} x_{36}
+1/2x_{22} x_{23} x_{26}^{2}x_{33} x_{34} x_{36} -3/4x_{22}^{2}x_{26}^{2}x_{33} x_{34} x_{36} +x_{23} x_{24} x_{30}^{2}x_{32} x_{34} x_{36}
-2x_{22} x_{24} x_{30}^{2}x_{32} x_{34} x_{36} +x_{21} x_{24} x_{30}^{2}x_{32} x_{34} x_{36} -x_{23}^{2}x_{30}^{2}x_{32} x_{34} x_{36}
+2x_{22} x_{23} x_{30}^{2}x_{32} x_{34} x_{36} -x_{21} x_{23} x_{30}^{2}x_{32} x_{34} x_{36} -x_{23} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36}
+2x_{22} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36} -x_{21} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36}
+1/2x_{23}^{2}x_{29} x_{30} x_{32} x_{34} x_{36} -x_{22} x_{23} x_{29} x_{30} x_{32} x_{34} x_{36} +1/2x_{21} x_{23} x_{29} x_{30} x_{32} x_{34} x_{36}
-x_{24} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{23} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36}
-2x_{22} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} +x_{21} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36}
-1/2x_{23} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{22} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36}
-x_{21} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36} -3/2x_{22} x_{23} x_{28} x_{30} x_{32} x_{34} x_{36}
+x_{21} x_{23} x_{28} x_{30} x_{32} x_{34} x_{36} +1/2x_{21} x_{22} x_{28} x_{30} x_{32} x_{34} x_{36}
-x_{21}^{2}x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{24} x_{25} x_{27} x_{30} x_{32} x_{34} x_{36} -2x_{23} x_{25} x_{27} x_{30} x_{32} x_{34} x_{36}
-x_{23} x_{24} x_{27} x_{30} x_{32} x_{34} x_{36} +3/2x_{23}^{2}x_{27} x_{30} x_{32} x_{34} x_{36} -x_{21} x_{23} x_{27} x_{30} x_{32} x_{34} x_{36}
+3/2x_{21}^{2}x_{27} x_{30} x_{32} x_{34} x_{36} -x_{24} x_{25} x_{26} x_{30} x_{32} x_{34} x_{36} +x_{23} x_{25} x_{26} x_{30} x_{32} x_{34} x_{36}
+1/2x_{23} x_{24} x_{26} x_{30} x_{32} x_{34} x_{36} -x_{23}^{2}x_{26} x_{30} x_{32} x_{34} x_{36} +1/2x_{22} x_{23} x_{26} x_{30} x_{32} x_{34} x_{36}
+x_{21} x_{23} x_{26} x_{30} x_{32} x_{34} x_{36} -3/2x_{21} x_{22} x_{26} x_{30} x_{32} x_{34} x_{36}
+x_{25}^{2}x_{28} x_{29} x_{32} x_{34} x_{36} -1/2x_{23} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36} -x_{22} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36}
+1/2x_{21} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36} +x_{22} x_{23} x_{28} x_{29} x_{32} x_{34} x_{36}
-3/4x_{21} x_{23} x_{28} x_{29} x_{32} x_{34} x_{36} -1/2x_{21} x_{22} x_{28} x_{29} x_{32} x_{34} x_{36}
+x_{21}^{2}x_{28} x_{29} x_{32} x_{34} x_{36} -2x_{25}^{2}x_{27} x_{29} x_{32} x_{34} x_{36} +2x_{23} x_{25} x_{27} x_{29} x_{32} x_{34} x_{36}
-x_{23}^{2}x_{27} x_{29} x_{32} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{32} x_{34} x_{36} -3/2x_{21}^{2}x_{27} x_{29} x_{32} x_{34} x_{36}
+x_{25}^{2}x_{26} x_{29} x_{32} x_{34} x_{36} -x_{23} x_{25} x_{26} x_{29} x_{32} x_{34} x_{36} +3/4x_{23}^{2}x_{26} x_{29} x_{32} x_{34} x_{36}
-1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{34} x_{36} -x_{21} x_{23} x_{26} x_{29} x_{32} x_{34} x_{36}
+3/2x_{21} x_{22} x_{26} x_{29} x_{32} x_{34} x_{36} -x_{25}^{2}x_{28}^{2}x_{32} x_{34} x_{36} +1/2x_{24} x_{25} x_{28}^{2}x_{32} x_{34} x_{36}
+3/2x_{22} x_{25} x_{28}^{2}x_{32} x_{34} x_{36} -x_{21} x_{25} x_{28}^{2}x_{32} x_{34} x_{36} -x_{22} x_{24} x_{28}^{2}x_{32} x_{34} x_{36}
+3/4x_{21} x_{24} x_{28}^{2}x_{32} x_{34} x_{36} +1/4x_{21} x_{22} x_{28}^{2}x_{32} x_{34} x_{36} -1/2x_{21}^{2}x_{28}^{2}x_{32} x_{34} x_{36}
+2x_{25}^{2}x_{27} x_{28} x_{32} x_{34} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36} -3/2x_{23} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36}
+1/2x_{21} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36} +x_{23} x_{24} x_{27} x_{28} x_{32} x_{34} x_{36}
-1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{34} x_{36} -1/4x_{21} x_{23} x_{27} x_{28} x_{32} x_{34} x_{36}
+3/4x_{21}^{2}x_{27} x_{28} x_{32} x_{34} x_{36} -x_{25}^{2}x_{26} x_{28} x_{32} x_{34} x_{36} +1/2x_{24} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36}
+x_{23} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} -x_{22} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{21} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36}
-3/4x_{23} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36}
-x_{21} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36} -1/4x_{22} x_{23} x_{26} x_{28} x_{32} x_{34} x_{36}
+x_{21} x_{23} x_{26} x_{28} x_{32} x_{34} x_{36} -3/4x_{21} x_{22} x_{26} x_{28} x_{32} x_{34} x_{36}
+1/2x_{23} x_{25} x_{26} x_{27} x_{32} x_{34} x_{36} -3/2x_{21} x_{25} x_{26} x_{27} x_{32} x_{34} x_{36}
-1/2x_{23} x_{24} x_{26} x_{27} x_{32} x_{34} x_{36} +3/2x_{21} x_{24} x_{26} x_{27} x_{32} x_{34} x_{36}
+1/4x_{23}^{2}x_{26} x_{27} x_{32} x_{34} x_{36} -3/4x_{21} x_{23} x_{26} x_{27} x_{32} x_{34} x_{36}
-x_{23} x_{25} x_{26}^{2}x_{32} x_{34} x_{36} +3/2x_{22} x_{25} x_{26}^{2}x_{32} x_{34} x_{36} +x_{23} x_{24} x_{26}^{2}x_{32} x_{34} x_{36}
-3/2x_{22} x_{24} x_{26}^{2}x_{32} x_{34} x_{36} -1/2x_{23}^{2}x_{26}^{2}x_{32} x_{34} x_{36} +3/4x_{22} x_{23} x_{26}^{2}x_{32} x_{34} x_{36}
+x_{22} x_{24} x_{30}^{2}x_{31} x_{34} x_{36} -2x_{21} x_{24} x_{30}^{2}x_{31} x_{34} x_{36} -x_{22} x_{23} x_{30}^{2}x_{31} x_{34} x_{36}
+2x_{21} x_{23} x_{30}^{2}x_{31} x_{34} x_{36} -x_{22} x_{25} x_{29} x_{30} x_{31} x_{34} x_{36} +2x_{21} x_{25} x_{29} x_{30} x_{31} x_{34} x_{36}
+1/2x_{22} x_{23} x_{29} x_{30} x_{31} x_{34} x_{36} -x_{21} x_{23} x_{29} x_{30} x_{31} x_{34} x_{36}
+x_{22} x_{25} x_{28} x_{30} x_{31} x_{34} x_{36} -2x_{21} x_{25} x_{28} x_{30} x_{31} x_{34} x_{36}
-x_{22} x_{24} x_{28} x_{30} x_{31} x_{34} x_{36} +2x_{21} x_{24} x_{28} x_{30} x_{31} x_{34} x_{36}
+x_{22} x_{23} x_{28} x_{30} x_{31} x_{34} x_{36} -2x_{21} x_{23} x_{28} x_{30} x_{31} x_{34} x_{36}
-1/2x_{22}^{2}x_{28} x_{30} x_{31} x_{34} x_{36} +x_{21} x_{22} x_{28} x_{30} x_{31} x_{34} x_{36} -x_{24} x_{25} x_{27} x_{30} x_{31} x_{34} x_{36}
+x_{23} x_{25} x_{27} x_{30} x_{31} x_{34} x_{36} +1/2x_{23} x_{24} x_{27} x_{30} x_{31} x_{34} x_{36}
-x_{23}^{2}x_{27} x_{30} x_{31} x_{34} x_{36} +1/2x_{22} x_{23} x_{27} x_{30} x_{31} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{30} x_{31} x_{34} x_{36}
-3/2x_{21} x_{22} x_{27} x_{30} x_{31} x_{34} x_{36} +2x_{24} x_{25} x_{26} x_{30} x_{31} x_{34} x_{36}
-2x_{23} x_{25} x_{26} x_{30} x_{31} x_{34} x_{36} -x_{23} x_{24} x_{26} x_{30} x_{31} x_{34} x_{36}
+2x_{23}^{2}x_{26} x_{30} x_{31} x_{34} x_{36} -2x_{22} x_{23} x_{26} x_{30} x_{31} x_{34} x_{36} +3/2x_{22}^{2}x_{26} x_{30} x_{31} x_{34} x_{36}
+1/2x_{22} x_{25} x_{28} x_{29} x_{31} x_{34} x_{36} -x_{21} x_{25} x_{28} x_{29} x_{31} x_{34} x_{36}
-3/4x_{22} x_{23} x_{28} x_{29} x_{31} x_{34} x_{36} +3/2x_{21} x_{23} x_{28} x_{29} x_{31} x_{34} x_{36}
+1/2x_{22}^{2}x_{28} x_{29} x_{31} x_{34} x_{36} -x_{21} x_{22} x_{28} x_{29} x_{31} x_{34} x_{36} +x_{25}^{2}x_{27} x_{29} x_{31} x_{34} x_{36}
-x_{23} x_{25} x_{27} x_{29} x_{31} x_{34} x_{36} +3/4x_{23}^{2}x_{27} x_{29} x_{31} x_{34} x_{36} -1/2x_{22} x_{23} x_{27} x_{29} x_{31} x_{34} x_{36}
-x_{21} x_{23} x_{27} x_{29} x_{31} x_{34} x_{36} +3/2x_{21} x_{22} x_{27} x_{29} x_{31} x_{34} x_{36}
-2x_{25}^{2}x_{26} x_{29} x_{31} x_{34} x_{36} +2x_{23} x_{25} x_{26} x_{29} x_{31} x_{34} x_{36} -3/2x_{23}^{2}x_{26} x_{29} x_{31} x_{34} x_{36}
+2x_{22} x_{23} x_{26} x_{29} x_{31} x_{34} x_{36} -3/2x_{22}^{2}x_{26} x_{29} x_{31} x_{34} x_{36} -x_{22} x_{25} x_{28}^{2}x_{31} x_{34} x_{36}
+2x_{21} x_{25} x_{28}^{2}x_{31} x_{34} x_{36} +3/4x_{22} x_{24} x_{28}^{2}x_{31} x_{34} x_{36} -3/2x_{21} x_{24} x_{28}^{2}x_{31} x_{34} x_{36}
-1/4x_{22}^{2}x_{28}^{2}x_{31} x_{34} x_{36} +1/2x_{21} x_{22} x_{28}^{2}x_{31} x_{34} x_{36} -x_{25}^{2}x_{27} x_{28} x_{31} x_{34} x_{36}
+1/2x_{24} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} +x_{23} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36}
+1/2x_{22} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} -2x_{21} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36}
-3/4x_{23} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36} -1/2x_{22} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36}
+2x_{21} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36} +1/2x_{22} x_{23} x_{27} x_{28} x_{31} x_{34} x_{36}
-1/2x_{21} x_{23} x_{27} x_{28} x_{31} x_{34} x_{36} -3/4x_{21} x_{22} x_{27} x_{28} x_{31} x_{34} x_{36}
+2x_{25}^{2}x_{26} x_{28} x_{31} x_{34} x_{36} -x_{24} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36} -2x_{23} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36}
+x_{22} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36} +3/2x_{23} x_{24} x_{26} x_{28} x_{31} x_{34} x_{36}
-x_{22} x_{24} x_{26} x_{28} x_{31} x_{34} x_{36} -1/2x_{22} x_{23} x_{26} x_{28} x_{31} x_{34} x_{36}
+3/4x_{22}^{2}x_{26} x_{28} x_{31} x_{34} x_{36} -1/2x_{23} x_{25} x_{27}^{2}x_{31} x_{34} x_{36} +3/2x_{21} x_{25} x_{27}^{2}x_{31} x_{34} x_{36}
+1/2x_{23} x_{24} x_{27}^{2}x_{31} x_{34} x_{36} -3/2x_{21} x_{24} x_{27}^{2}x_{31} x_{34} x_{36} -1/4x_{23}^{2}x_{27}^{2}x_{31} x_{34} x_{36}
+3/4x_{21} x_{23} x_{27}^{2}x_{31} x_{34} x_{36} +x_{23} x_{25} x_{26} x_{27} x_{31} x_{34} x_{36} -3/2x_{22} x_{25} x_{26} x_{27} x_{31} x_{34} x_{36}
-x_{23} x_{24} x_{26} x_{27} x_{31} x_{34} x_{36} +3/2x_{22} x_{24} x_{26} x_{27} x_{31} x_{34} x_{36}
+1/2x_{23}^{2}x_{26} x_{27} x_{31} x_{34} x_{36} -3/4x_{22} x_{23} x_{26} x_{27} x_{31} x_{34} x_{36}
+1/2x_{24}^{2}x_{30}^{2}x_{33}^{2}x_{36} -x_{22} x_{24} x_{30}^{2}x_{33}^{2}x_{36} +3/2x_{22}^{2}x_{30}^{2}x_{33}^{2}x_{36}
-2x_{21} x_{22} x_{30}^{2}x_{33}^{2}x_{36} +2x_{21}^{2}x_{30}^{2}x_{33}^{2}x_{36} -x_{24} x_{25} x_{29} x_{30} x_{33}^{2}x_{36}
+x_{22} x_{25} x_{29} x_{30} x_{33}^{2}x_{36} +1/2x_{22} x_{24} x_{29} x_{30} x_{33}^{2}x_{36} -3/2x_{22}^{2}x_{29} x_{30} x_{33}^{2}x_{36}
+2x_{21} x_{22} x_{29} x_{30} x_{33}^{2}x_{36} -2x_{21}^{2}x_{29} x_{30} x_{33}^{2}x_{36} +x_{24} x_{25} x_{27} x_{30} x_{33}^{2}x_{36}
-3x_{22} x_{25} x_{27} x_{30} x_{33}^{2}x_{36} +2x_{21} x_{25} x_{27} x_{30} x_{33}^{2}x_{36} -1/2x_{24}^{2}x_{27} x_{30} x_{33}^{2}x_{36}
+3/2x_{22} x_{24} x_{27} x_{30} x_{33}^{2}x_{36} -x_{21} x_{24} x_{27} x_{30} x_{33}^{2}x_{36} +2x_{22} x_{25} x_{26} x_{30} x_{33}^{2}x_{36}
-4x_{21} x_{25} x_{26} x_{30} x_{33}^{2}x_{36} -x_{22} x_{24} x_{26} x_{30} x_{33}^{2}x_{36} +2x_{21} x_{24} x_{26} x_{30} x_{33}^{2}x_{36}
+1/2x_{25}^{2}x_{29}^{2}x_{33}^{2}x_{36} -1/2x_{22} x_{25} x_{29}^{2}x_{33}^{2}x_{36} +1/2x_{22}^{2}x_{29}^{2}x_{33}^{2}x_{36}
-3/4x_{21} x_{22} x_{29}^{2}x_{33}^{2}x_{36} +3/4x_{21}^{2}x_{29}^{2}x_{33}^{2}x_{36} -x_{25}^{2}x_{27} x_{29} x_{33}^{2}x_{36}
+1/2x_{24} x_{25} x_{27} x_{29} x_{33}^{2}x_{36} +3/2x_{22} x_{25} x_{27} x_{29} x_{33}^{2}x_{36} -x_{21} x_{25} x_{27} x_{29} x_{33}^{2}x_{36}
-x_{22} x_{24} x_{27} x_{29} x_{33}^{2}x_{36} +3/4x_{21} x_{24} x_{27} x_{29} x_{33}^{2}x_{36} +1/4x_{21} x_{22} x_{27} x_{29} x_{33}^{2}x_{36}
-1/2x_{21}^{2}x_{27} x_{29} x_{33}^{2}x_{36} -x_{22} x_{25} x_{26} x_{29} x_{33}^{2}x_{36} +2x_{21} x_{25} x_{26} x_{29} x_{33}^{2}x_{36}
+3/4x_{22} x_{24} x_{26} x_{29} x_{33}^{2}x_{36} -3/2x_{21} x_{24} x_{26} x_{29} x_{33}^{2}x_{36} -1/4x_{22}^{2}x_{26} x_{29} x_{33}^{2}x_{36}
+1/2x_{21} x_{22} x_{26} x_{29} x_{33}^{2}x_{36} +3/2x_{25}^{2}x_{27}^{2}x_{33}^{2}x_{36} -3/2x_{24} x_{25} x_{27}^{2}x_{33}^{2}x_{36}
+1/2x_{24}^{2}x_{27}^{2}x_{33}^{2}x_{36} -1/4x_{21} x_{24} x_{27}^{2}x_{33}^{2}x_{36} +1/2x_{21}^{2}x_{27}^{2}x_{33}^{2}x_{36}
-2x_{25}^{2}x_{26} x_{27} x_{33}^{2}x_{36} +2x_{24} x_{25} x_{26} x_{27} x_{33}^{2}x_{36} -3/4x_{24}^{2}x_{26} x_{27} x_{33}^{2}x_{36}
+1/4x_{22} x_{24} x_{26} x_{27} x_{33}^{2}x_{36} +1/2x_{21} x_{24} x_{26} x_{27} x_{33}^{2}x_{36} -x_{21} x_{22} x_{26} x_{27} x_{33}^{2}x_{36}
+2x_{25}^{2}x_{26}^{2}x_{33}^{2}x_{36} -2x_{24} x_{25} x_{26}^{2}x_{33}^{2}x_{36} +3/4x_{24}^{2}x_{26}^{2}x_{33}^{2}x_{36}
-1/2x_{22} x_{24} x_{26}^{2}x_{33}^{2}x_{36} +1/2x_{22}^{2}x_{26}^{2}x_{33}^{2}x_{36} -x_{24}^{2}x_{30}^{2}x_{32} x_{33} x_{36}
+x_{23} x_{24} x_{30}^{2}x_{32} x_{33} x_{36} +2x_{22} x_{24} x_{30}^{2}x_{32} x_{33} x_{36} -x_{21} x_{24} x_{30}^{2}x_{32} x_{33} x_{36}
-3x_{22} x_{23} x_{30}^{2}x_{32} x_{33} x_{36} +2x_{21} x_{23} x_{30}^{2}x_{32} x_{33} x_{36} +x_{21} x_{22} x_{30}^{2}x_{32} x_{33} x_{36}
-2x_{21}^{2}x_{30}^{2}x_{32} x_{33} x_{36} +2x_{24} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{23} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36}
-2x_{22} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} +x_{21} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36}
-1/2x_{23} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36}
+1/2x_{21} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36} +3x_{22} x_{23} x_{29} x_{30} x_{32} x_{33} x_{36}
-2x_{21} x_{23} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{21} x_{22} x_{29} x_{30} x_{32} x_{33} x_{36}
+2x_{21}^{2}x_{29} x_{30} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36} +3x_{22} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36}
-2x_{21} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36} +1/2x_{24}^{2}x_{28} x_{30} x_{32} x_{33} x_{36} -3/2x_{22} x_{24} x_{28} x_{30} x_{32} x_{33} x_{36}
+x_{21} x_{24} x_{28} x_{30} x_{32} x_{33} x_{36} -2x_{24} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36}
+3x_{23} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36} -x_{21} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36}
+x_{24}^{2}x_{27} x_{30} x_{32} x_{33} x_{36} -3/2x_{23} x_{24} x_{27} x_{30} x_{32} x_{33} x_{36} +1/2x_{21} x_{24} x_{27} x_{30} x_{32} x_{33} x_{36}
+x_{24} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} -2x_{23} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36}
-x_{22} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} +4x_{21} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36}
-1/2x_{24}^{2}x_{26} x_{30} x_{32} x_{33} x_{36} +x_{23} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36} +1/2x_{22} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36}
-2x_{21} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36} -x_{25}^{2}x_{29}^{2}x_{32} x_{33} x_{36} +1/2x_{23} x_{25} x_{29}^{2}x_{32} x_{33} x_{36}
+x_{22} x_{25} x_{29}^{2}x_{32} x_{33} x_{36} -1/2x_{21} x_{25} x_{29}^{2}x_{32} x_{33} x_{36} -x_{22} x_{23} x_{29}^{2}x_{32} x_{33} x_{36}
+3/4x_{21} x_{23} x_{29}^{2}x_{32} x_{33} x_{36} +1/2x_{21} x_{22} x_{29}^{2}x_{32} x_{33} x_{36} -x_{21}^{2}x_{29}^{2}x_{32} x_{33} x_{36}
+x_{25}^{2}x_{28} x_{29} x_{32} x_{33} x_{36} -1/2x_{24} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36} -3/2x_{22} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36}
+x_{21} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36} +x_{22} x_{24} x_{28} x_{29} x_{32} x_{33} x_{36} -3/4x_{21} x_{24} x_{28} x_{29} x_{32} x_{33} x_{36}
-1/4x_{21} x_{22} x_{28} x_{29} x_{32} x_{33} x_{36} +1/2x_{21}^{2}x_{28} x_{29} x_{32} x_{33} x_{36}
+2x_{25}^{2}x_{27} x_{29} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36} -3/2x_{23} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36}
+1/2x_{21} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36} +x_{23} x_{24} x_{27} x_{29} x_{32} x_{33} x_{36}
-1/2x_{21} x_{24} x_{27} x_{29} x_{32} x_{33} x_{36} -1/4x_{21} x_{23} x_{27} x_{29} x_{32} x_{33} x_{36}
+3/4x_{21}^{2}x_{27} x_{29} x_{32} x_{33} x_{36} -x_{25}^{2}x_{26} x_{29} x_{32} x_{33} x_{36} +1/2x_{24} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36}
+x_{23} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} +1/2x_{22} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36}
-2x_{21} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} -3/4x_{23} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36}
-1/2x_{22} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36} +2x_{21} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36}
+1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{33} x_{36} -1/2x_{21} x_{23} x_{26} x_{29} x_{32} x_{33} x_{36}
-3/4x_{21} x_{22} x_{26} x_{29} x_{32} x_{33} x_{36} -3x_{25}^{2}x_{27} x_{28} x_{32} x_{33} x_{36} +3x_{24} x_{25} x_{27} x_{28} x_{32} x_{33} x_{36}
-x_{24}^{2}x_{27} x_{28} x_{32} x_{33} x_{36} +1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{33} x_{36} -x_{21}^{2}x_{27} x_{28} x_{32} x_{33} x_{36}
+2x_{25}^{2}x_{26} x_{28} x_{32} x_{33} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{32} x_{33} x_{36} +3/4x_{24}^{2}x_{26} x_{28} x_{32} x_{33} x_{36}
-1/4x_{22} x_{24} x_{26} x_{28} x_{32} x_{33} x_{36} -1/2x_{21} x_{24} x_{26} x_{28} x_{32} x_{33} x_{36}
+x_{21} x_{22} x_{26} x_{28} x_{32} x_{33} x_{36} +x_{25}^{2}x_{26} x_{27} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{26} x_{27} x_{32} x_{33} x_{36}
+1/2x_{24}^{2}x_{26} x_{27} x_{32} x_{33} x_{36} -1/4x_{23} x_{24} x_{26} x_{27} x_{32} x_{33} x_{36}
-3/4x_{21} x_{24} x_{26} x_{27} x_{32} x_{33} x_{36} +x_{21} x_{23} x_{26} x_{27} x_{32} x_{33} x_{36}
-2x_{25}^{2}x_{26}^{2}x_{32} x_{33} x_{36} +2x_{24} x_{25} x_{26}^{2}x_{32} x_{33} x_{36} -x_{24}^{2}x_{26}^{2}x_{32} x_{33} x_{36}
+1/2x_{23} x_{24} x_{26}^{2}x_{32} x_{33} x_{36} +3/4x_{22} x_{24} x_{26}^{2}x_{32} x_{33} x_{36} -x_{22} x_{23} x_{26}^{2}x_{32} x_{33} x_{36}
-x_{22} x_{24} x_{30}^{2}x_{31} x_{33} x_{36} +2x_{21} x_{24} x_{30}^{2}x_{31} x_{33} x_{36} +2x_{22} x_{23} x_{30}^{2}x_{31} x_{33} x_{36}
-4x_{21} x_{23} x_{30}^{2}x_{31} x_{33} x_{36} -x_{22}^{2}x_{30}^{2}x_{31} x_{33} x_{36} +2x_{21} x_{22} x_{30}^{2}x_{31} x_{33} x_{36}
+x_{22} x_{25} x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{25} x_{29} x_{30} x_{31} x_{33} x_{36}
+1/2x_{22} x_{24} x_{29} x_{30} x_{31} x_{33} x_{36} -x_{21} x_{24} x_{29} x_{30} x_{31} x_{33} x_{36}
-2x_{22} x_{23} x_{29} x_{30} x_{31} x_{33} x_{36} +4x_{21} x_{23} x_{29} x_{30} x_{31} x_{33} x_{36}
+x_{22}^{2}x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{22} x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{22} x_{25} x_{28} x_{30} x_{31} x_{33} x_{36}
+4x_{21} x_{25} x_{28} x_{30} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{28} x_{30} x_{31} x_{33} x_{36}
-2x_{21} x_{24} x_{28} x_{30} x_{31} x_{33} x_{36} +x_{24} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36}
-2x_{23} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} +2x_{22} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36}
-2x_{21} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} -1/2x_{24}^{2}x_{27} x_{30} x_{31} x_{33} x_{36} +x_{23} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36}
-x_{22} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36} +x_{21} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36} -2x_{24} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36}
+4x_{23} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36} -2x_{22} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36}
+x_{24}^{2}x_{26} x_{30} x_{31} x_{33} x_{36} -2x_{23} x_{24} x_{26} x_{30} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{26} x_{30} x_{31} x_{33} x_{36}
-1/2x_{22} x_{25} x_{29}^{2}x_{31} x_{33} x_{36} +x_{21} x_{25} x_{29}^{2}x_{31} x_{33} x_{36} +3/4x_{22} x_{23} x_{29}^{2}x_{31} x_{33} x_{36}
-3/2x_{21} x_{23} x_{29}^{2}x_{31} x_{33} x_{36} -1/2x_{22}^{2}x_{29}^{2}x_{31} x_{33} x_{36} +x_{21} x_{22} x_{29}^{2}x_{31} x_{33} x_{36}
+x_{22} x_{25} x_{28} x_{29} x_{31} x_{33} x_{36} -2x_{21} x_{25} x_{28} x_{29} x_{31} x_{33} x_{36}
-3/4x_{22} x_{24} x_{28} x_{29} x_{31} x_{33} x_{36} +3/2x_{21} x_{24} x_{28} x_{29} x_{31} x_{33} x_{36}
+1/4x_{22}^{2}x_{28} x_{29} x_{31} x_{33} x_{36} -1/2x_{21} x_{22} x_{28} x_{29} x_{31} x_{33} x_{36}
-x_{25}^{2}x_{27} x_{29} x_{31} x_{33} x_{36} +1/2x_{24} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{23} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36}
-x_{22} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{21} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} -3/4x_{23} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36}
+x_{22} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36} -x_{21} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36} -1/4x_{22} x_{23} x_{27} x_{29} x_{31} x_{33} x_{36}
+x_{21} x_{23} x_{27} x_{29} x_{31} x_{33} x_{36} -3/4x_{21} x_{22} x_{27} x_{29} x_{31} x_{33} x_{36}
+2x_{25}^{2}x_{26} x_{29} x_{31} x_{33} x_{36} -x_{24} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36} -2x_{23} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36}
+x_{22} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36} +3/2x_{23} x_{24} x_{26} x_{29} x_{31} x_{33} x_{36}
-x_{22} x_{24} x_{26} x_{29} x_{31} x_{33} x_{36} -1/2x_{22} x_{23} x_{26} x_{29} x_{31} x_{33} x_{36}
+3/4x_{22}^{2}x_{26} x_{29} x_{31} x_{33} x_{36} +2x_{25}^{2}x_{27} x_{28} x_{31} x_{33} x_{36} -2x_{24} x_{25} x_{27} x_{28} x_{31} x_{33} x_{36}
+3/4x_{24}^{2}x_{27} x_{28} x_{31} x_{33} x_{36} -1/4x_{22} x_{24} x_{27} x_{28} x_{31} x_{33} x_{36}
-1/2x_{21} x_{24} x_{27} x_{28} x_{31} x_{33} x_{36} +x_{21} x_{22} x_{27} x_{28} x_{31} x_{33} x_{36}
-4x_{25}^{2}x_{26} x_{28} x_{31} x_{33} x_{36} +4x_{24} x_{25} x_{26} x_{28} x_{31} x_{33} x_{36} -3/2x_{24}^{2}x_{26} x_{28} x_{31} x_{33} x_{36}
+x_{22} x_{24} x_{26} x_{28} x_{31} x_{33} x_{36} -x_{22}^{2}x_{26} x_{28} x_{31} x_{33} x_{36} -x_{25}^{2}x_{27}^{2}x_{31} x_{33} x_{36}
+x_{24} x_{25} x_{27}^{2}x_{31} x_{33} x_{36} -1/2x_{24}^{2}x_{27}^{2}x_{31} x_{33} x_{36} +1/4x_{23} x_{24} x_{27}^{2}x_{31} x_{33} x_{36}
+3/4x_{21} x_{24} x_{27}^{2}x_{31} x_{33} x_{36} -x_{21} x_{23} x_{27}^{2}x_{31} x_{33} x_{36} +2x_{25}^{2}x_{26} x_{27} x_{31} x_{33} x_{36}
-2x_{24} x_{25} x_{26} x_{27} x_{31} x_{33} x_{36} +x_{24}^{2}x_{26} x_{27} x_{31} x_{33} x_{36} -1/2x_{23} x_{24} x_{26} x_{27} x_{31} x_{33} x_{36}
-3/4x_{22} x_{24} x_{26} x_{27} x_{31} x_{33} x_{36} +x_{22} x_{23} x_{26} x_{27} x_{31} x_{33} x_{36}
+x_{24}^{2}x_{30}^{2}x_{32}^{2}x_{36} -2x_{23} x_{24} x_{30}^{2}x_{32}^{2}x_{36} +3/2x_{23}^{2}x_{30}^{2}x_{32}^{2}x_{36}
-x_{21} x_{23} x_{30}^{2}x_{32}^{2}x_{36} +3/2x_{21}^{2}x_{30}^{2}x_{32}^{2}x_{36} -2x_{24} x_{25} x_{29} x_{30} x_{32}^{2}x_{36}
+2x_{23} x_{25} x_{29} x_{30} x_{32}^{2}x_{36} +x_{23} x_{24} x_{29} x_{30} x_{32}^{2}x_{36} -3/2x_{23}^{2}x_{29} x_{30} x_{32}^{2}x_{36}
+x_{21} x_{23} x_{29} x_{30} x_{32}^{2}x_{36} -3/2x_{21}^{2}x_{29} x_{30} x_{32}^{2}x_{36} +2x_{24} x_{25} x_{28} x_{30} x_{32}^{2}x_{36}
-3x_{23} x_{25} x_{28} x_{30} x_{32}^{2}x_{36} +x_{21} x_{25} x_{28} x_{30} x_{32}^{2}x_{36} -x_{24}^{2}x_{28} x_{30} x_{32}^{2}x_{36}
+3/2x_{23} x_{24} x_{28} x_{30} x_{32}^{2}x_{36} -1/2x_{21} x_{24} x_{28} x_{30} x_{32}^{2}x_{36} +x_{23} x_{25} x_{26} x_{30} x_{32}^{2}x_{36}
-3x_{21} x_{25} x_{26} x_{30} x_{32}^{2}x_{36} -1/2x_{23} x_{24} x_{26} x_{30} x_{32}^{2}x_{36} +3/2x_{21} x_{24} x_{26} x_{30} x_{32}^{2}x_{36}
+x_{25}^{2}x_{29}^{2}x_{32}^{2}x_{36} -x_{23} x_{25} x_{29}^{2}x_{32}^{2}x_{36} +1/2x_{23}^{2}x_{29}^{2}x_{32}^{2}x_{36}
-1/2x_{21} x_{23} x_{29}^{2}x_{32}^{2}x_{36} +3/4x_{21}^{2}x_{29}^{2}x_{32}^{2}x_{36} -2x_{25}^{2}x_{28} x_{29} x_{32}^{2}x_{36}
+x_{24} x_{25} x_{28} x_{29} x_{32}^{2}x_{36} +3/2x_{23} x_{25} x_{28} x_{29} x_{32}^{2}x_{36} -1/2x_{21} x_{25} x_{28} x_{29} x_{32}^{2}x_{36}
-x_{23} x_{24} x_{28} x_{29} x_{32}^{2}x_{36} +1/2x_{21} x_{24} x_{28} x_{29} x_{32}^{2}x_{36} +1/4x_{21} x_{23} x_{28} x_{29} x_{32}^{2}x_{36}
-3/4x_{21}^{2}x_{28} x_{29} x_{32}^{2}x_{36} -1/2x_{23} x_{25} x_{26} x_{29} x_{32}^{2}x_{36} +3/2x_{21} x_{25} x_{26} x_{29} x_{32}^{2}x_{36}
+1/2x_{23} x_{24} x_{26} x_{29} x_{32}^{2}x_{36} -3/2x_{21} x_{24} x_{26} x_{29} x_{32}^{2}x_{36} -1/4x_{23}^{2}x_{26} x_{29} x_{32}^{2}x_{36}
+3/4x_{21} x_{23} x_{26} x_{29} x_{32}^{2}x_{36} +3/2x_{25}^{2}x_{28}^{2}x_{32}^{2}x_{36} -3/2x_{24} x_{25} x_{28}^{2}x_{32}^{2}x_{36}
+1/2x_{24}^{2}x_{28}^{2}x_{32}^{2}x_{36} -1/4x_{21} x_{24} x_{28}^{2}x_{32}^{2}x_{36} +1/2x_{21}^{2}x_{28}^{2}x_{32}^{2}x_{36}
-x_{25}^{2}x_{26} x_{28} x_{32}^{2}x_{36} +x_{24} x_{25} x_{26} x_{28} x_{32}^{2}x_{36} -1/2x_{24}^{2}x_{26} x_{28} x_{32}^{2}x_{36}
+1/4x_{23} x_{24} x_{26} x_{28} x_{32}^{2}x_{36} +3/4x_{21} x_{24} x_{26} x_{28} x_{32}^{2}x_{36} -x_{21} x_{23} x_{26} x_{28} x_{32}^{2}x_{36}
+3/2x_{25}^{2}x_{26}^{2}x_{32}^{2}x_{36} -3/2x_{24} x_{25} x_{26}^{2}x_{32}^{2}x_{36} +3/4x_{24}^{2}x_{26}^{2}x_{32}^{2}x_{36}
-3/4x_{23} x_{24} x_{26}^{2}x_{32}^{2}x_{36} +1/2x_{23}^{2}x_{26}^{2}x_{32}^{2}x_{36} -x_{24}^{2}x_{30}^{2}x_{31} x_{32} x_{36}
+2x_{23} x_{24} x_{30}^{2}x_{31} x_{32} x_{36} -2x_{23}^{2}x_{30}^{2}x_{31} x_{32} x_{36} +x_{22} x_{23} x_{30}^{2}x_{31} x_{32} x_{36}
+2x_{21} x_{23} x_{30}^{2}x_{31} x_{32} x_{36} -3x_{21} x_{22} x_{30}^{2}x_{31} x_{32} x_{36} +2x_{24} x_{25} x_{29} x_{30} x_{31} x_{32} x_{36}
-2x_{23} x_{25} x_{29} x_{30} x_{31} x_{32} x_{36} -x_{23} x_{24} x_{29} x_{30} x_{31} x_{32} x_{36}
+2x_{23}^{2}x_{29} x_{30} x_{31} x_{32} x_{36} -x_{22} x_{23} x_{29} x_{30} x_{31} x_{32} x_{36} -2x_{21} x_{23} x_{29} x_{30} x_{31} x_{32} x_{36}
+3x_{21} x_{22} x_{29} x_{30} x_{31} x_{32} x_{36} -2x_{24} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36}
+4x_{23} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} -x_{22} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36}
-2x_{21} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} +x_{24}^{2}x_{28} x_{30} x_{31} x_{32} x_{36} -2x_{23} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36}
+1/2x_{22} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36} +x_{21} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36}
-x_{23} x_{25} x_{27} x_{30} x_{31} x_{32} x_{36} +3x_{21} x_{25} x_{27} x_{30} x_{31} x_{32} x_{36}
+1/2x_{23} x_{24} x_{27} x_{30} x_{31} x_{32} x_{36} -3/2x_{21} x_{24} x_{27} x_{30} x_{31} x_{32} x_{36}
-2x_{23} x_{25} x_{26} x_{30} x_{31} x_{32} x_{36} +3x_{22} x_{25} x_{26} x_{30} x_{31} x_{32} x_{36}
+x_{23} x_{24} x_{26} x_{30} x_{31} x_{32} x_{36} -3/2x_{22} x_{24} x_{26} x_{30} x_{31} x_{32} x_{36}
-x_{25}^{2}x_{29}^{2}x_{31} x_{32} x_{36} +x_{23} x_{25} x_{29}^{2}x_{31} x_{32} x_{36} -3/4x_{23}^{2}x_{29}^{2}x_{31} x_{32} x_{36}
+1/2x_{22} x_{23} x_{29}^{2}x_{31} x_{32} x_{36} +x_{21} x_{23} x_{29}^{2}x_{31} x_{32} x_{36} -3/2x_{21} x_{22} x_{29}^{2}x_{31} x_{32} x_{36}
+2x_{25}^{2}x_{28} x_{29} x_{31} x_{32} x_{36} -x_{24} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} -2x_{23} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36}
+1/2x_{22} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} +x_{21} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36}
+3/2x_{23} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36} -1/2x_{22} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36}
-x_{21} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36} -1/4x_{22} x_{23} x_{28} x_{29} x_{31} x_{32} x_{36}
-1/2x_{21} x_{23} x_{28} x_{29} x_{31} x_{32} x_{36} +3/2x_{21} x_{22} x_{28} x_{29} x_{31} x_{32} x_{36}
+1/2x_{23} x_{25} x_{27} x_{29} x_{31} x_{32} x_{36} -3/2x_{21} x_{25} x_{27} x_{29} x_{31} x_{32} x_{36}
-1/2x_{23} x_{24} x_{27} x_{29} x_{31} x_{32} x_{36} +3/2x_{21} x_{24} x_{27} x_{29} x_{31} x_{32} x_{36}
+1/4x_{23}^{2}x_{27} x_{29} x_{31} x_{32} x_{36} -3/4x_{21} x_{23} x_{27} x_{29} x_{31} x_{32} x_{36}
+x_{23} x_{25} x_{26} x_{29} x_{31} x_{32} x_{36} -3/2x_{22} x_{25} x_{26} x_{29} x_{31} x_{32} x_{36}
-x_{23} x_{24} x_{26} x_{29} x_{31} x_{32} x_{36} +3/2x_{22} x_{24} x_{26} x_{29} x_{31} x_{32} x_{36}
+1/2x_{23}^{2}x_{26} x_{29} x_{31} x_{32} x_{36} -3/4x_{22} x_{23} x_{26} x_{29} x_{31} x_{32} x_{36}
-2x_{25}^{2}x_{28}^{2}x_{31} x_{32} x_{36} +2x_{24} x_{25} x_{28}^{2}x_{31} x_{32} x_{36} -3/4x_{24}^{2}x_{28}^{2}x_{31} x_{32} x_{36}
+1/4x_{22} x_{24} x_{28}^{2}x_{31} x_{32} x_{36} +1/2x_{21} x_{24} x_{28}^{2}x_{31} x_{32} x_{36} -x_{21} x_{22} x_{28}^{2}x_{31} x_{32} x_{36}
+x_{25}^{2}x_{27} x_{28} x_{31} x_{32} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{31} x_{32} x_{36} +1/2x_{24}^{2}x_{27} x_{28} x_{31} x_{32} x_{36}
-1/4x_{23} x_{24} x_{27} x_{28} x_{31} x_{32} x_{36} -3/4x_{21} x_{24} x_{27} x_{28} x_{31} x_{32} x_{36}
+x_{21} x_{23} x_{27} x_{28} x_{31} x_{32} x_{36} +2x_{25}^{2}x_{26} x_{28} x_{31} x_{32} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{31} x_{32} x_{36}
+x_{24}^{2}x_{26} x_{28} x_{31} x_{32} x_{36} -1/2x_{23} x_{24} x_{26} x_{28} x_{31} x_{32} x_{36} -3/4x_{22} x_{24} x_{26} x_{28} x_{31} x_{32} x_{36}
+x_{22} x_{23} x_{26} x_{28} x_{31} x_{32} x_{36} -3x_{25}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +3x_{24} x_{25} x_{26} x_{27} x_{31} x_{32} x_{36}
-3/2x_{24}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +3/2x_{23} x_{24} x_{26} x_{27} x_{31} x_{32} x_{36}
-x_{23}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +x_{24}^{2}x_{30}^{2}x_{31}^{2}x_{36} -2x_{23} x_{24} x_{30}^{2}x_{31}^{2}x_{36}
+2x_{23}^{2}x_{30}^{2}x_{31}^{2}x_{36} -2x_{22} x_{23} x_{30}^{2}x_{31}^{2}x_{36} +3/2x_{22}^{2}x_{30}^{2}x_{31}^{2}x_{36}
-2x_{24} x_{25} x_{29} x_{30} x_{31}^{2}x_{36} +2x_{23} x_{25} x_{29} x_{30} x_{31}^{2}x_{36} +x_{23} x_{24} x_{29} x_{30} x_{31}^{2}x_{36}
-2x_{23}^{2}x_{29} x_{30} x_{31}^{2}x_{36} +2x_{22} x_{23} x_{29} x_{30} x_{31}^{2}x_{36} -3/2x_{22}^{2}x_{29} x_{30} x_{31}^{2}x_{36}
+2x_{24} x_{25} x_{28} x_{30} x_{31}^{2}x_{36} -4x_{23} x_{25} x_{28} x_{30} x_{31}^{2}x_{36} +2x_{22} x_{25} x_{28} x_{30} x_{31}^{2}x_{36}
-x_{24}^{2}x_{28} x_{30} x_{31}^{2}x_{36} +2x_{23} x_{24} x_{28} x_{30} x_{31}^{2}x_{36} -x_{22} x_{24} x_{28} x_{30} x_{31}^{2}x_{36}
+2x_{23} x_{25} x_{27} x_{30} x_{31}^{2}x_{36} -3x_{22} x_{25} x_{27} x_{30} x_{31}^{2}x_{36} -x_{23} x_{24} x_{27} x_{30} x_{31}^{2}x_{36}
+3/2x_{22} x_{24} x_{27} x_{30} x_{31}^{2}x_{36} +x_{25}^{2}x_{29}^{2}x_{31}^{2}x_{36} -x_{23} x_{25} x_{29}^{2}x_{31}^{2}x_{36}
+3/4x_{23}^{2}x_{29}^{2}x_{31}^{2}x_{36} -x_{22} x_{23} x_{29}^{2}x_{31}^{2}x_{36} +3/4x_{22}^{2}x_{29}^{2}x_{31}^{2}x_{36}
-2x_{25}^{2}x_{28} x_{29} x_{31}^{2}x_{36} +x_{24} x_{25} x_{28} x_{29} x_{31}^{2}x_{36} +2x_{23} x_{25} x_{28} x_{29} x_{31}^{2}x_{36}
-x_{22} x_{25} x_{28} x_{29} x_{31}^{2}x_{36} -3/2x_{23} x_{24} x_{28} x_{29} x_{31}^{2}x_{36} +x_{22} x_{24} x_{28} x_{29} x_{31}^{2}x_{36}
+1/2x_{22} x_{23} x_{28} x_{29} x_{31}^{2}x_{36} -3/4x_{22}^{2}x_{28} x_{29} x_{31}^{2}x_{36} -x_{23} x_{25} x_{27} x_{29} x_{31}^{2}x_{36}
+3/2x_{22} x_{25} x_{27} x_{29} x_{31}^{2}x_{36} +x_{23} x_{24} x_{27} x_{29} x_{31}^{2}x_{36} -3/2x_{22} x_{24} x_{27} x_{29} x_{31}^{2}x_{36}
-1/2x_{23}^{2}x_{27} x_{29} x_{31}^{2}x_{36} +3/4x_{22} x_{23} x_{27} x_{29} x_{31}^{2}x_{36} +2x_{25}^{2}x_{28}^{2}x_{31}^{2}x_{36}
-2x_{24} x_{25} x_{28}^{2}x_{31}^{2}x_{36} +3/4x_{24}^{2}x_{28}^{2}x_{31}^{2}x_{36} -1/2x_{22} x_{24} x_{28}^{2}x_{31}^{2}x_{36}
+1/2x_{22}^{2}x_{28}^{2}x_{31}^{2}x_{36} -2x_{25}^{2}x_{27} x_{28} x_{31}^{2}x_{36} +2x_{24} x_{25} x_{27} x_{28} x_{31}^{2}x_{36}
-x_{24}^{2}x_{27} x_{28} x_{31}^{2}x_{36} +1/2x_{23} x_{24} x_{27} x_{28} x_{31}^{2}x_{36} +3/4x_{22} x_{24} x_{27} x_{28} x_{31}^{2}x_{36}
-x_{22} x_{23} x_{27} x_{28} x_{31}^{2}x_{36} +3/2x_{25}^{2}x_{27}^{2}x_{31}^{2}x_{36} -3/2x_{24} x_{25} x_{27}^{2}x_{31}^{2}x_{36}
+3/4x_{24}^{2}x_{27}^{2}x_{31}^{2}x_{36} -3/4x_{23} x_{24} x_{27}^{2}x_{31}^{2}x_{36} +1/2x_{23}^{2}x_{27}^{2}x_{31}^{2}x_{36}
-1= 0
x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +2x_{7} x_{17} +2x_{6} x_{16} +2x_{5} x_{15} +x_{4} x_{14}
+2x_{3} x_{13} +2x_{2} x_{12} +x_{1} x_{11} -4= 0
x_{7} x_{15} +x_{6} x_{13} +x_{4} x_{12} +x_{2} x_{11} = 0
x_{9} x_{15} +x_{8} x_{13} +x_{6} x_{12} +x_{3} x_{11} = 0
x_{10} x_{15} +x_{9} x_{13} +x_{7} x_{12} +x_{5} x_{11} = 0
x_{5} x_{17} +x_{3} x_{16} +x_{2} x_{14} +x_{1} x_{12} = 0
x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +2x_{7} x_{17} +2x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14}
+x_{3} x_{13} +x_{2} x_{12} -3= 0
x_{9} x_{17} +x_{8} x_{16} +x_{6} x_{14} +x_{3} x_{12} = 0
x_{10} x_{17} +x_{9} x_{16} +x_{7} x_{14} +x_{5} x_{12} = 0
x_{5} x_{19} +x_{3} x_{18} +x_{2} x_{16} +x_{1} x_{13} = 0
x_{7} x_{19} +x_{6} x_{18} +x_{4} x_{16} +x_{2} x_{13} = 0
x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{3} x_{13} -2= 0
x_{10} x_{19} +x_{9} x_{18} +x_{7} x_{16} +x_{5} x_{13} = 0
x_{5} x_{20} +x_{3} x_{19} +x_{2} x_{17} +x_{1} x_{15} = 0
x_{7} x_{20} +x_{6} x_{19} +x_{4} x_{17} +x_{2} x_{15} = 0
x_{9} x_{20} +x_{8} x_{19} +x_{6} x_{17} +x_{3} x_{15} = 0
x_{10} x_{20} +x_{9} x_{19} +x_{7} x_{17} +x_{5} x_{15} -1= 0
x_{1} x_{24} -x_{1} x_{23} = 0
x_{2} x_{24} -x_{2} x_{22} = 0
x_{3} x_{24} -x_{3} x_{23} +x_{3} x_{22} -x_{3} x_{21} = 0
x_{4} x_{23} -x_{4} x_{22} = 0
x_{5} x_{24} -x_{5} x_{23} +x_{5} x_{21} = 0
x_{6} x_{23} -x_{6} x_{21} = 0
x_{7} x_{23} -x_{7} x_{22} +x_{7} x_{21} = 0
x_{8} x_{22} -x_{8} x_{21} = 0
x_{9} x_{22} = 0
x_{10} x_{21} = 0
x_{11} x_{24} -x_{11} x_{23} = 0
x_{12} x_{24} -x_{12} x_{22} = 0
x_{13} x_{24} -x_{13} x_{23} +x_{13} x_{22} -x_{13} x_{21} = 0
x_{14} x_{23} -x_{14} x_{22} = 0
x_{15} x_{24} -x_{15} x_{23} +x_{15} x_{21} = 0
x_{16} x_{23} -x_{16} x_{21} = 0
x_{17} x_{23} -x_{17} x_{22} +x_{17} x_{21} = 0
x_{18} x_{22} -x_{18} x_{21} = 0
x_{19} x_{22} = 0
x_{20} x_{21} = 0
x_{1} x_{29} -x_{1} x_{28} = 0
x_{2} x_{29} -x_{2} x_{27} = 0
x_{3} x_{29} -x_{3} x_{28} +x_{3} x_{27} -x_{3} x_{26} = 0
x_{4} x_{28} -x_{4} x_{27} = 0
x_{5} x_{29} -x_{5} x_{28} +x_{5} x_{26} = 0
x_{6} x_{28} -x_{6} x_{26} = 0
x_{7} x_{28} -x_{7} x_{27} +x_{7} x_{26} = 0
x_{8} x_{27} -x_{8} x_{26} = 0
x_{9} x_{27} = 0
x_{10} x_{26} = 0
x_{11} x_{29} -x_{11} x_{28} = 0
x_{12} x_{29} -x_{12} x_{27} = 0
x_{13} x_{29} -x_{13} x_{28} +x_{13} x_{27} -x_{13} x_{26} = 0
x_{14} x_{28} -x_{14} x_{27} = 0
x_{15} x_{29} -x_{15} x_{28} +x_{15} x_{26} = 0
x_{16} x_{28} -x_{16} x_{26} = 0
x_{17} x_{28} -x_{17} x_{27} +x_{17} x_{26} = 0
x_{18} x_{27} -x_{18} x_{26} = 0
x_{19} x_{27} = 0
x_{20} x_{26} = 0
x_{1} x_{34} -x_{1} x_{33} = 0
x_{2} x_{34} -x_{2} x_{32} = 0
x_{3} x_{34} -x_{3} x_{33} +x_{3} x_{32} -x_{3} x_{31} = 0
x_{4} x_{33} -x_{4} x_{32} = 0
x_{5} x_{34} -x_{5} x_{33} +x_{5} x_{31} = 0
x_{6} x_{33} -x_{6} x_{31} = 0
x_{7} x_{33} -x_{7} x_{32} +x_{7} x_{31} = 0
x_{8} x_{32} -x_{8} x_{31} = 0
x_{9} x_{32} = 0
x_{10} x_{31} = 0
x_{11} x_{34} -x_{11} x_{33} = 0
x_{12} x_{34} -x_{12} x_{32} = 0
x_{13} x_{34} -x_{13} x_{33} +x_{13} x_{32} -x_{13} x_{31} = 0
x_{14} x_{33} -x_{14} x_{32} = 0
x_{15} x_{34} -x_{15} x_{33} +x_{15} x_{31} = 0
x_{16} x_{33} -x_{16} x_{31} = 0
x_{17} x_{33} -x_{17} x_{32} +x_{17} x_{31} = 0
x_{18} x_{32} -x_{18} x_{31} = 0
x_{19} x_{32} = 0
x_{20} x_{31} = 0
For the calculator:
(DynkinType =A^{4}_1; ElementsCartan =((2, 4, 6, 8, 4)); generators =(x_{1} g_{-13}+x_{2} g_{-16}+x_{3} g_{-18}+x_{4} g_{-19}+x_{5} g_{-20}+x_{6} g_{-21}+x_{7} g_{-22}+x_{8} g_{-23}+x_{9} g_{-24}+x_{10} g_{-25}, x_{20} g_{25}+x_{19} g_{24}+x_{18} g_{23}+x_{17} g_{22}+x_{16} g_{21}+x_{15} g_{20}+x_{14} g_{19}+x_{13} g_{18}+x_{12} g_{16}+x_{11} g_{13}) );
FindOneSolutionSerreLikePolynomialSystem{}( 1/2x_{23}^{2}x_{29}^{2}x_{35}^{2}x_{36} -x_{22} x_{23} x_{29}^{2}x_{35}^{2}x_{36} +x_{22}^{2}x_{29}^{2}x_{35}^{2}x_{36} -x_{21} x_{22} x_{29}^{2}x_{35}^{2}x_{36} +x_{21}^{2}x_{29}^{2}x_{35}^{2}x_{36} -x_{23} x_{24} x_{28} x_{29} x_{35}^{2}x_{36} +x_{22} x_{24} x_{28} x_{29} x_{35}^{2}x_{36} +x_{22} x_{23} x_{28} x_{29} x_{35}^{2}x_{36} -2x_{22}^{2}x_{28} x_{29} x_{35}^{2}x_{36} +2x_{21} x_{22} x_{28} x_{29} x_{35}^{2}x_{36} -2x_{21}^{2}x_{28} x_{29} x_{35}^{2}x_{36} +x_{23} x_{24} x_{27} x_{29} x_{35}^{2}x_{36} -2x_{22} x_{24} x_{27} x_{29} x_{35}^{2}x_{36} +x_{21} x_{24} x_{27} x_{29} x_{35}^{2}x_{36} -x_{23}^{2}x_{27} x_{29} x_{35}^{2}x_{36} +2x_{22} x_{23} x_{27} x_{29} x_{35}^{2}x_{36} -x_{21} x_{23} x_{27} x_{29} x_{35}^{2}x_{36} +x_{22} x_{24} x_{26} x_{29} x_{35}^{2}x_{36} -2x_{21} x_{24} x_{26} x_{29} x_{35}^{2}x_{36} -x_{22} x_{23} x_{26} x_{29} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{26} x_{29} x_{35}^{2}x_{36} +1/2x_{24}^{2}x_{28}^{2}x_{35}^{2}x_{36} -x_{22} x_{24} x_{28}^{2}x_{35}^{2}x_{36} +3/2x_{22}^{2}x_{28}^{2}x_{35}^{2}x_{36} -2x_{21} x_{22} x_{28}^{2}x_{35}^{2}x_{36} +2x_{21}^{2}x_{28}^{2}x_{35}^{2}x_{36} -x_{24}^{2}x_{27} x_{28} x_{35}^{2}x_{36} +x_{23} x_{24} x_{27} x_{28} x_{35}^{2}x_{36} +2x_{22} x_{24} x_{27} x_{28} x_{35}^{2}x_{36} -x_{21} x_{24} x_{27} x_{28} x_{35}^{2}x_{36} -3x_{22} x_{23} x_{27} x_{28} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{27} x_{28} x_{35}^{2}x_{36} +x_{21} x_{22} x_{27} x_{28} x_{35}^{2}x_{36} -2x_{21}^{2}x_{27} x_{28} x_{35}^{2}x_{36} -x_{22} x_{24} x_{26} x_{28} x_{35}^{2}x_{36} +2x_{21} x_{24} x_{26} x_{28} x_{35}^{2}x_{36} +2x_{22} x_{23} x_{26} x_{28} x_{35}^{2}x_{36} -4x_{21} x_{23} x_{26} x_{28} x_{35}^{2}x_{36} -x_{22}^{2}x_{26} x_{28} x_{35}^{2}x_{36} +2x_{21} x_{22} x_{26} x_{28} x_{35}^{2}x_{36} +x_{24}^{2}x_{27}^{2}x_{35}^{2}x_{36} -2x_{23} x_{24} x_{27}^{2}x_{35}^{2}x_{36} +3/2x_{23}^{2}x_{27}^{2}x_{35}^{2}x_{36} -x_{21} x_{23} x_{27}^{2}x_{35}^{2}x_{36} +3/2x_{21}^{2}x_{27}^{2}x_{35}^{2}x_{36} -x_{24}^{2}x_{26} x_{27} x_{35}^{2}x_{36} +2x_{23} x_{24} x_{26} x_{27} x_{35}^{2}x_{36} -2x_{23}^{2}x_{26} x_{27} x_{35}^{2}x_{36} +x_{22} x_{23} x_{26} x_{27} x_{35}^{2}x_{36} +2x_{21} x_{23} x_{26} x_{27} x_{35}^{2}x_{36} -3x_{21} x_{22} x_{26} x_{27} x_{35}^{2}x_{36} +x_{24}^{2}x_{26}^{2}x_{35}^{2}x_{36} -2x_{23} x_{24} x_{26}^{2}x_{35}^{2}x_{36} +2x_{23}^{2}x_{26}^{2}x_{35}^{2}x_{36} -2x_{22} x_{23} x_{26}^{2}x_{35}^{2}x_{36} +3/2x_{22}^{2}x_{26}^{2}x_{35}^{2}x_{36} -x_{23}^{2}x_{29} x_{30} x_{34} x_{35} x_{36} +2x_{22} x_{23} x_{29} x_{30} x_{34} x_{35} x_{36} -2x_{22}^{2}x_{29} x_{30} x_{34} x_{35} x_{36} +2x_{21} x_{22} x_{29} x_{30} x_{34} x_{35} x_{36} -2x_{21}^{2}x_{29} x_{30} x_{34} x_{35} x_{36} +x_{23} x_{24} x_{28} x_{30} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{28} x_{30} x_{34} x_{35} x_{36} -x_{22} x_{23} x_{28} x_{30} x_{34} x_{35} x_{36} +2x_{22}^{2}x_{28} x_{30} x_{34} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{34} x_{35} x_{36} +2x_{21}^{2}x_{28} x_{30} x_{34} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36} +2x_{22} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36} -x_{21} x_{24} x_{27} x_{30} x_{34} x_{35} x_{36} +x_{23}^{2}x_{27} x_{30} x_{34} x_{35} x_{36} -2x_{22} x_{23} x_{27} x_{30} x_{34} x_{35} x_{36} +x_{21} x_{23} x_{27} x_{30} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{26} x_{30} x_{34} x_{35} x_{36} +2x_{21} x_{24} x_{26} x_{30} x_{34} x_{35} x_{36} +x_{22} x_{23} x_{26} x_{30} x_{34} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{34} x_{35} x_{36} +x_{23} x_{25} x_{28} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{25} x_{28} x_{29} x_{34} x_{35} x_{36} -1/2x_{22} x_{23} x_{28} x_{29} x_{34} x_{35} x_{36} +x_{22}^{2}x_{28} x_{29} x_{34} x_{35} x_{36} -x_{21} x_{22} x_{28} x_{29} x_{34} x_{35} x_{36} +x_{21}^{2}x_{28} x_{29} x_{34} x_{35} x_{36} -x_{23} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36} +2x_{22} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36} -x_{21} x_{25} x_{27} x_{29} x_{34} x_{35} x_{36} +1/2x_{23}^{2}x_{27} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{23} x_{27} x_{29} x_{34} x_{35} x_{36} +1/2x_{21} x_{23} x_{27} x_{29} x_{34} x_{35} x_{36} -x_{22} x_{25} x_{26} x_{29} x_{34} x_{35} x_{36} +2x_{21} x_{25} x_{26} x_{29} x_{34} x_{35} x_{36} +1/2x_{22} x_{23} x_{26} x_{29} x_{34} x_{35} x_{36} -x_{21} x_{23} x_{26} x_{29} x_{34} x_{35} x_{36} -x_{24} x_{25} x_{28}^{2}x_{34} x_{35} x_{36} +x_{22} x_{25} x_{28}^{2}x_{34} x_{35} x_{36} +1/2x_{22} x_{24} x_{28}^{2}x_{34} x_{35} x_{36} -3/2x_{22}^{2}x_{28}^{2}x_{34} x_{35} x_{36} +2x_{21} x_{22} x_{28}^{2}x_{34} x_{35} x_{36} -2x_{21}^{2}x_{28}^{2}x_{34} x_{35} x_{36} +2x_{24} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{23} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} -2x_{22} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} +x_{21} x_{25} x_{27} x_{28} x_{34} x_{35} x_{36} -1/2x_{23} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{22} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36} +1/2x_{21} x_{24} x_{27} x_{28} x_{34} x_{35} x_{36} +3x_{22} x_{23} x_{27} x_{28} x_{34} x_{35} x_{36} -2x_{21} x_{23} x_{27} x_{28} x_{34} x_{35} x_{36} -x_{21} x_{22} x_{27} x_{28} x_{34} x_{35} x_{36} +2x_{21}^{2}x_{27} x_{28} x_{34} x_{35} x_{36} +x_{22} x_{25} x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{28} x_{34} x_{35} x_{36} +1/2x_{22} x_{24} x_{26} x_{28} x_{34} x_{35} x_{36} -x_{21} x_{24} x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{22} x_{23} x_{26} x_{28} x_{34} x_{35} x_{36} +4x_{21} x_{23} x_{26} x_{28} x_{34} x_{35} x_{36} +x_{22}^{2}x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{21} x_{22} x_{26} x_{28} x_{34} x_{35} x_{36} -2x_{24} x_{25} x_{27}^{2}x_{34} x_{35} x_{36} +2x_{23} x_{25} x_{27}^{2}x_{34} x_{35} x_{36} +x_{23} x_{24} x_{27}^{2}x_{34} x_{35} x_{36} -3/2x_{23}^{2}x_{27}^{2}x_{34} x_{35} x_{36} +x_{21} x_{23} x_{27}^{2}x_{34} x_{35} x_{36} -3/2x_{21}^{2}x_{27}^{2}x_{34} x_{35} x_{36} +2x_{24} x_{25} x_{26} x_{27} x_{34} x_{35} x_{36} -2x_{23} x_{25} x_{26} x_{27} x_{34} x_{35} x_{36} -x_{23} x_{24} x_{26} x_{27} x_{34} x_{35} x_{36} +2x_{23}^{2}x_{26} x_{27} x_{34} x_{35} x_{36} -x_{22} x_{23} x_{26} x_{27} x_{34} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{27} x_{34} x_{35} x_{36} +3x_{21} x_{22} x_{26} x_{27} x_{34} x_{35} x_{36} -2x_{24} x_{25} x_{26}^{2}x_{34} x_{35} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{34} x_{35} x_{36} +x_{23} x_{24} x_{26}^{2}x_{34} x_{35} x_{36} -2x_{23}^{2}x_{26}^{2}x_{34} x_{35} x_{36} +2x_{22} x_{23} x_{26}^{2}x_{34} x_{35} x_{36} -3/2x_{22}^{2}x_{26}^{2}x_{34} x_{35} x_{36} +x_{23} x_{24} x_{29} x_{30} x_{33} x_{35} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{33} x_{35} x_{36} -x_{22} x_{23} x_{29} x_{30} x_{33} x_{35} x_{36} +2x_{22}^{2}x_{29} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{29} x_{30} x_{33} x_{35} x_{36} +2x_{21}^{2}x_{29} x_{30} x_{33} x_{35} x_{36} -x_{24}^{2}x_{28} x_{30} x_{33} x_{35} x_{36} +2x_{22} x_{24} x_{28} x_{30} x_{33} x_{35} x_{36} -3x_{22}^{2}x_{28} x_{30} x_{33} x_{35} x_{36} +4x_{21} x_{22} x_{28} x_{30} x_{33} x_{35} x_{36} -4x_{21}^{2}x_{28} x_{30} x_{33} x_{35} x_{36} +x_{24}^{2}x_{27} x_{30} x_{33} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36} -2x_{22} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36} +x_{21} x_{24} x_{27} x_{30} x_{33} x_{35} x_{36} +3x_{22} x_{23} x_{27} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{23} x_{27} x_{30} x_{33} x_{35} x_{36} -x_{21} x_{22} x_{27} x_{30} x_{33} x_{35} x_{36} +2x_{21}^{2}x_{27} x_{30} x_{33} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{24} x_{26} x_{30} x_{33} x_{35} x_{36} -2x_{22} x_{23} x_{26} x_{30} x_{33} x_{35} x_{36} +4x_{21} x_{23} x_{26} x_{30} x_{33} x_{35} x_{36} +x_{22}^{2}x_{26} x_{30} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{26} x_{30} x_{33} x_{35} x_{36} -x_{23} x_{25} x_{29}^{2}x_{33} x_{35} x_{36} +x_{22} x_{25} x_{29}^{2}x_{33} x_{35} x_{36} +1/2x_{22} x_{23} x_{29}^{2}x_{33} x_{35} x_{36} -x_{22}^{2}x_{29}^{2}x_{33} x_{35} x_{36} +x_{21} x_{22} x_{29}^{2}x_{33} x_{35} x_{36} -x_{21}^{2}x_{29}^{2}x_{33} x_{35} x_{36} +x_{24} x_{25} x_{28} x_{29} x_{33} x_{35} x_{36} -x_{22} x_{25} x_{28} x_{29} x_{33} x_{35} x_{36} -1/2x_{22} x_{24} x_{28} x_{29} x_{33} x_{35} x_{36} +3/2x_{22}^{2}x_{28} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{29} x_{33} x_{35} x_{36} +2x_{21}^{2}x_{28} x_{29} x_{33} x_{35} x_{36} -x_{24} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} +2x_{23} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} -2x_{22} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} +x_{21} x_{25} x_{27} x_{29} x_{33} x_{35} x_{36} -1/2x_{23} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36} +2x_{22} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36} -x_{21} x_{24} x_{27} x_{29} x_{33} x_{35} x_{36} -3/2x_{22} x_{23} x_{27} x_{29} x_{33} x_{35} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{33} x_{35} x_{36} +1/2x_{21} x_{22} x_{27} x_{29} x_{33} x_{35} x_{36} -x_{21}^{2}x_{27} x_{29} x_{33} x_{35} x_{36} +x_{22} x_{25} x_{26} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{29} x_{33} x_{35} x_{36} -x_{22} x_{24} x_{26} x_{29} x_{33} x_{35} x_{36} +2x_{21} x_{24} x_{26} x_{29} x_{33} x_{35} x_{36} +x_{22} x_{23} x_{26} x_{29} x_{33} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{29} x_{33} x_{35} x_{36} -1/2x_{22}^{2}x_{26} x_{29} x_{33} x_{35} x_{36} +x_{21} x_{22} x_{26} x_{29} x_{33} x_{35} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36} +3x_{22} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{27} x_{28} x_{33} x_{35} x_{36} +1/2x_{24}^{2}x_{27} x_{28} x_{33} x_{35} x_{36} -3/2x_{22} x_{24} x_{27} x_{28} x_{33} x_{35} x_{36} +x_{21} x_{24} x_{27} x_{28} x_{33} x_{35} x_{36} -2x_{22} x_{25} x_{26} x_{28} x_{33} x_{35} x_{36} +4x_{21} x_{25} x_{26} x_{28} x_{33} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{33} x_{35} x_{36} -2x_{21} x_{24} x_{26} x_{28} x_{33} x_{35} x_{36} +2x_{24} x_{25} x_{27}^{2}x_{33} x_{35} x_{36} -3x_{23} x_{25} x_{27}^{2}x_{33} x_{35} x_{36} +x_{21} x_{25} x_{27}^{2}x_{33} x_{35} x_{36} -x_{24}^{2}x_{27}^{2}x_{33} x_{35} x_{36} +3/2x_{23} x_{24} x_{27}^{2}x_{33} x_{35} x_{36} -1/2x_{21} x_{24} x_{27}^{2}x_{33} x_{35} x_{36} -2x_{24} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} +4x_{23} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} -x_{22} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{27} x_{33} x_{35} x_{36} +x_{24}^{2}x_{26} x_{27} x_{33} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36} +1/2x_{22} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36} +x_{21} x_{24} x_{26} x_{27} x_{33} x_{35} x_{36} +2x_{24} x_{25} x_{26}^{2}x_{33} x_{35} x_{36} -4x_{23} x_{25} x_{26}^{2}x_{33} x_{35} x_{36} +2x_{22} x_{25} x_{26}^{2}x_{33} x_{35} x_{36} -x_{24}^{2}x_{26}^{2}x_{33} x_{35} x_{36} +2x_{23} x_{24} x_{26}^{2}x_{33} x_{35} x_{36} -x_{22} x_{24} x_{26}^{2}x_{33} x_{35} x_{36} -x_{23} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36} +2x_{22} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36} -x_{21} x_{24} x_{29} x_{30} x_{32} x_{35} x_{36} +x_{23}^{2}x_{29} x_{30} x_{32} x_{35} x_{36} -2x_{22} x_{23} x_{29} x_{30} x_{32} x_{35} x_{36} +x_{21} x_{23} x_{29} x_{30} x_{32} x_{35} x_{36} +x_{24}^{2}x_{28} x_{30} x_{32} x_{35} x_{36} -x_{23} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36} -2x_{22} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36} +x_{21} x_{24} x_{28} x_{30} x_{32} x_{35} x_{36} +3x_{22} x_{23} x_{28} x_{30} x_{32} x_{35} x_{36} -2x_{21} x_{23} x_{28} x_{30} x_{32} x_{35} x_{36} -x_{21} x_{22} x_{28} x_{30} x_{32} x_{35} x_{36} +2x_{21}^{2}x_{28} x_{30} x_{32} x_{35} x_{36} -2x_{24}^{2}x_{27} x_{30} x_{32} x_{35} x_{36} +4x_{23} x_{24} x_{27} x_{30} x_{32} x_{35} x_{36} -3x_{23}^{2}x_{27} x_{30} x_{32} x_{35} x_{36} +2x_{21} x_{23} x_{27} x_{30} x_{32} x_{35} x_{36} -3x_{21}^{2}x_{27} x_{30} x_{32} x_{35} x_{36} +x_{24}^{2}x_{26} x_{30} x_{32} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{30} x_{32} x_{35} x_{36} +2x_{23}^{2}x_{26} x_{30} x_{32} x_{35} x_{36} -x_{22} x_{23} x_{26} x_{30} x_{32} x_{35} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{32} x_{35} x_{36} +3x_{21} x_{22} x_{26} x_{30} x_{32} x_{35} x_{36} +x_{23} x_{25} x_{29}^{2}x_{32} x_{35} x_{36} -2x_{22} x_{25} x_{29}^{2}x_{32} x_{35} x_{36} +x_{21} x_{25} x_{29}^{2}x_{32} x_{35} x_{36} -1/2x_{23}^{2}x_{29}^{2}x_{32} x_{35} x_{36} +x_{22} x_{23} x_{29}^{2}x_{32} x_{35} x_{36} -1/2x_{21} x_{23} x_{29}^{2}x_{32} x_{35} x_{36} -x_{24} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{23} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} +4x_{22} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} -2x_{21} x_{25} x_{28} x_{29} x_{32} x_{35} x_{36} +x_{23} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{22} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36} +1/2x_{21} x_{24} x_{28} x_{29} x_{32} x_{35} x_{36} -3/2x_{22} x_{23} x_{28} x_{29} x_{32} x_{35} x_{36} +x_{21} x_{23} x_{28} x_{29} x_{32} x_{35} x_{36} +1/2x_{21} x_{22} x_{28} x_{29} x_{32} x_{35} x_{36} -x_{21}^{2}x_{28} x_{29} x_{32} x_{35} x_{36} +2x_{24} x_{25} x_{27} x_{29} x_{32} x_{35} x_{36} -2x_{23} x_{25} x_{27} x_{29} x_{32} x_{35} x_{36} -x_{23} x_{24} x_{27} x_{29} x_{32} x_{35} x_{36} +3/2x_{23}^{2}x_{27} x_{29} x_{32} x_{35} x_{36} -x_{21} x_{23} x_{27} x_{29} x_{32} x_{35} x_{36} +3/2x_{21}^{2}x_{27} x_{29} x_{32} x_{35} x_{36} -x_{24} x_{25} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{23} x_{25} x_{26} x_{29} x_{32} x_{35} x_{36} +1/2x_{23} x_{24} x_{26} x_{29} x_{32} x_{35} x_{36} -x_{23}^{2}x_{26} x_{29} x_{32} x_{35} x_{36} +1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{21} x_{23} x_{26} x_{29} x_{32} x_{35} x_{36} -3/2x_{21} x_{22} x_{26} x_{29} x_{32} x_{35} x_{36} +x_{24} x_{25} x_{28}^{2}x_{32} x_{35} x_{36} -3x_{22} x_{25} x_{28}^{2}x_{32} x_{35} x_{36} +2x_{21} x_{25} x_{28}^{2}x_{32} x_{35} x_{36} -1/2x_{24}^{2}x_{28}^{2}x_{32} x_{35} x_{36} +3/2x_{22} x_{24} x_{28}^{2}x_{32} x_{35} x_{36} -x_{21} x_{24} x_{28}^{2}x_{32} x_{35} x_{36} -2x_{24} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36} +3x_{23} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36} -x_{21} x_{25} x_{27} x_{28} x_{32} x_{35} x_{36} +x_{24}^{2}x_{27} x_{28} x_{32} x_{35} x_{36} -3/2x_{23} x_{24} x_{27} x_{28} x_{32} x_{35} x_{36} +1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{35} x_{36} +x_{24} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} -2x_{23} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} +2x_{22} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} -2x_{21} x_{25} x_{26} x_{28} x_{32} x_{35} x_{36} -1/2x_{24}^{2}x_{26} x_{28} x_{32} x_{35} x_{36} +x_{23} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36} -x_{22} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36} +x_{21} x_{24} x_{26} x_{28} x_{32} x_{35} x_{36} -x_{23} x_{25} x_{26} x_{27} x_{32} x_{35} x_{36} +3x_{21} x_{25} x_{26} x_{27} x_{32} x_{35} x_{36} +1/2x_{23} x_{24} x_{26} x_{27} x_{32} x_{35} x_{36} -3/2x_{21} x_{24} x_{26} x_{27} x_{32} x_{35} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{32} x_{35} x_{36} -3x_{22} x_{25} x_{26}^{2}x_{32} x_{35} x_{36} -x_{23} x_{24} x_{26}^{2}x_{32} x_{35} x_{36} +3/2x_{22} x_{24} x_{26}^{2}x_{32} x_{35} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{31} x_{35} x_{36} +2x_{21} x_{24} x_{29} x_{30} x_{31} x_{35} x_{36} +x_{22} x_{23} x_{29} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{23} x_{29} x_{30} x_{31} x_{35} x_{36} +x_{22} x_{24} x_{28} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{24} x_{28} x_{30} x_{31} x_{35} x_{36} -2x_{22} x_{23} x_{28} x_{30} x_{31} x_{35} x_{36} +4x_{21} x_{23} x_{28} x_{30} x_{31} x_{35} x_{36} +x_{22}^{2}x_{28} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{31} x_{35} x_{36} +x_{24}^{2}x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{23} x_{24} x_{27} x_{30} x_{31} x_{35} x_{36} +2x_{23}^{2}x_{27} x_{30} x_{31} x_{35} x_{36} -x_{22} x_{23} x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{21} x_{23} x_{27} x_{30} x_{31} x_{35} x_{36} +3x_{21} x_{22} x_{27} x_{30} x_{31} x_{35} x_{36} -2x_{24}^{2}x_{26} x_{30} x_{31} x_{35} x_{36} +4x_{23} x_{24} x_{26} x_{30} x_{31} x_{35} x_{36} -4x_{23}^{2}x_{26} x_{30} x_{31} x_{35} x_{36} +4x_{22} x_{23} x_{26} x_{30} x_{31} x_{35} x_{36} -3x_{22}^{2}x_{26} x_{30} x_{31} x_{35} x_{36} +x_{22} x_{25} x_{29}^{2}x_{31} x_{35} x_{36} -2x_{21} x_{25} x_{29}^{2}x_{31} x_{35} x_{36} -1/2x_{22} x_{23} x_{29}^{2}x_{31} x_{35} x_{36} +x_{21} x_{23} x_{29}^{2}x_{31} x_{35} x_{36} -2x_{22} x_{25} x_{28} x_{29} x_{31} x_{35} x_{36} +4x_{21} x_{25} x_{28} x_{29} x_{31} x_{35} x_{36} +1/2x_{22} x_{24} x_{28} x_{29} x_{31} x_{35} x_{36} -x_{21} x_{24} x_{28} x_{29} x_{31} x_{35} x_{36} +x_{22} x_{23} x_{28} x_{29} x_{31} x_{35} x_{36} -2x_{21} x_{23} x_{28} x_{29} x_{31} x_{35} x_{36} -1/2x_{22}^{2}x_{28} x_{29} x_{31} x_{35} x_{36} +x_{21} x_{22} x_{28} x_{29} x_{31} x_{35} x_{36} -x_{24} x_{25} x_{27} x_{29} x_{31} x_{35} x_{36} +x_{23} x_{25} x_{27} x_{29} x_{31} x_{35} x_{36} +1/2x_{23} x_{24} x_{27} x_{29} x_{31} x_{35} x_{36} -x_{23}^{2}x_{27} x_{29} x_{31} x_{35} x_{36} +1/2x_{22} x_{23} x_{27} x_{29} x_{31} x_{35} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{31} x_{35} x_{36} -3/2x_{21} x_{22} x_{27} x_{29} x_{31} x_{35} x_{36} +2x_{24} x_{25} x_{26} x_{29} x_{31} x_{35} x_{36} -2x_{23} x_{25} x_{26} x_{29} x_{31} x_{35} x_{36} -x_{23} x_{24} x_{26} x_{29} x_{31} x_{35} x_{36} +2x_{23}^{2}x_{26} x_{29} x_{31} x_{35} x_{36} -2x_{22} x_{23} x_{26} x_{29} x_{31} x_{35} x_{36} +3/2x_{22}^{2}x_{26} x_{29} x_{31} x_{35} x_{36} +2x_{22} x_{25} x_{28}^{2}x_{31} x_{35} x_{36} -4x_{21} x_{25} x_{28}^{2}x_{31} x_{35} x_{36} -x_{22} x_{24} x_{28}^{2}x_{31} x_{35} x_{36} +2x_{21} x_{24} x_{28}^{2}x_{31} x_{35} x_{36} +x_{24} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} -2x_{23} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} -x_{22} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} +4x_{21} x_{25} x_{27} x_{28} x_{31} x_{35} x_{36} -1/2x_{24}^{2}x_{27} x_{28} x_{31} x_{35} x_{36} +x_{23} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36} +1/2x_{22} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36} -2x_{21} x_{24} x_{27} x_{28} x_{31} x_{35} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36} +4x_{23} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36} -2x_{22} x_{25} x_{26} x_{28} x_{31} x_{35} x_{36} +x_{24}^{2}x_{26} x_{28} x_{31} x_{35} x_{36} -2x_{23} x_{24} x_{26} x_{28} x_{31} x_{35} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{31} x_{35} x_{36} +x_{23} x_{25} x_{27}^{2}x_{31} x_{35} x_{36} -3x_{21} x_{25} x_{27}^{2}x_{31} x_{35} x_{36} -1/2x_{23} x_{24} x_{27}^{2}x_{31} x_{35} x_{36} +3/2x_{21} x_{24} x_{27}^{2}x_{31} x_{35} x_{36} -2x_{23} x_{25} x_{26} x_{27} x_{31} x_{35} x_{36} +3x_{22} x_{25} x_{26} x_{27} x_{31} x_{35} x_{36} +x_{23} x_{24} x_{26} x_{27} x_{31} x_{35} x_{36} -3/2x_{22} x_{24} x_{26} x_{27} x_{31} x_{35} x_{36} +1/2x_{23}^{2}x_{30}^{2}x_{34}^{2}x_{36} -x_{22} x_{23} x_{30}^{2}x_{34}^{2}x_{36} +x_{22}^{2}x_{30}^{2}x_{34}^{2}x_{36} -x_{21} x_{22} x_{30}^{2}x_{34}^{2}x_{36} +x_{21}^{2}x_{30}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{28} x_{30} x_{34}^{2}x_{36} +x_{22} x_{25} x_{28} x_{30} x_{34}^{2}x_{36} +1/2x_{22} x_{23} x_{28} x_{30} x_{34}^{2}x_{36} -x_{22}^{2}x_{28} x_{30} x_{34}^{2}x_{36} +x_{21} x_{22} x_{28} x_{30} x_{34}^{2}x_{36} -x_{21}^{2}x_{28} x_{30} x_{34}^{2}x_{36} +x_{23} x_{25} x_{27} x_{30} x_{34}^{2}x_{36} -2x_{22} x_{25} x_{27} x_{30} x_{34}^{2}x_{36} +x_{21} x_{25} x_{27} x_{30} x_{34}^{2}x_{36} -1/2x_{23}^{2}x_{27} x_{30} x_{34}^{2}x_{36} +x_{22} x_{23} x_{27} x_{30} x_{34}^{2}x_{36} -1/2x_{21} x_{23} x_{27} x_{30} x_{34}^{2}x_{36} +x_{22} x_{25} x_{26} x_{30} x_{34}^{2}x_{36} -2x_{21} x_{25} x_{26} x_{30} x_{34}^{2}x_{36} -1/2x_{22} x_{23} x_{26} x_{30} x_{34}^{2}x_{36} +x_{21} x_{23} x_{26} x_{30} x_{34}^{2}x_{36} +1/2x_{25}^{2}x_{28}^{2}x_{34}^{2}x_{36} -1/2x_{22} x_{25} x_{28}^{2}x_{34}^{2}x_{36} +1/2x_{22}^{2}x_{28}^{2}x_{34}^{2}x_{36} -3/4x_{21} x_{22} x_{28}^{2}x_{34}^{2}x_{36} +3/4x_{21}^{2}x_{28}^{2}x_{34}^{2}x_{36} -x_{25}^{2}x_{27} x_{28} x_{34}^{2}x_{36} +1/2x_{23} x_{25} x_{27} x_{28} x_{34}^{2}x_{36} +x_{22} x_{25} x_{27} x_{28} x_{34}^{2}x_{36} -1/2x_{21} x_{25} x_{27} x_{28} x_{34}^{2}x_{36} -x_{22} x_{23} x_{27} x_{28} x_{34}^{2}x_{36} +3/4x_{21} x_{23} x_{27} x_{28} x_{34}^{2}x_{36} +1/2x_{21} x_{22} x_{27} x_{28} x_{34}^{2}x_{36} -x_{21}^{2}x_{27} x_{28} x_{34}^{2}x_{36} -1/2x_{22} x_{25} x_{26} x_{28} x_{34}^{2}x_{36} +x_{21} x_{25} x_{26} x_{28} x_{34}^{2}x_{36} +3/4x_{22} x_{23} x_{26} x_{28} x_{34}^{2}x_{36} -3/2x_{21} x_{23} x_{26} x_{28} x_{34}^{2}x_{36} -1/2x_{22}^{2}x_{26} x_{28} x_{34}^{2}x_{36} +x_{21} x_{22} x_{26} x_{28} x_{34}^{2}x_{36} +x_{25}^{2}x_{27}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{27}^{2}x_{34}^{2}x_{36} +1/2x_{23}^{2}x_{27}^{2}x_{34}^{2}x_{36} -1/2x_{21} x_{23} x_{27}^{2}x_{34}^{2}x_{36} +3/4x_{21}^{2}x_{27}^{2}x_{34}^{2}x_{36} -x_{25}^{2}x_{26} x_{27} x_{34}^{2}x_{36} +x_{23} x_{25} x_{26} x_{27} x_{34}^{2}x_{36} -3/4x_{23}^{2}x_{26} x_{27} x_{34}^{2}x_{36} +1/2x_{22} x_{23} x_{26} x_{27} x_{34}^{2}x_{36} +x_{21} x_{23} x_{26} x_{27} x_{34}^{2}x_{36} -3/2x_{21} x_{22} x_{26} x_{27} x_{34}^{2}x_{36} +x_{25}^{2}x_{26}^{2}x_{34}^{2}x_{36} -x_{23} x_{25} x_{26}^{2}x_{34}^{2}x_{36} +3/4x_{23}^{2}x_{26}^{2}x_{34}^{2}x_{36} -x_{22} x_{23} x_{26}^{2}x_{34}^{2}x_{36} +3/4x_{22}^{2}x_{26}^{2}x_{34}^{2}x_{36} -x_{23} x_{24} x_{30}^{2}x_{33} x_{34} x_{36} +x_{22} x_{24} x_{30}^{2}x_{33} x_{34} x_{36} +x_{22} x_{23} x_{30}^{2}x_{33} x_{34} x_{36} -2x_{22}^{2}x_{30}^{2}x_{33} x_{34} x_{36} +2x_{21} x_{22} x_{30}^{2}x_{33} x_{34} x_{36} -2x_{21}^{2}x_{30}^{2}x_{33} x_{34} x_{36} +x_{23} x_{25} x_{29} x_{30} x_{33} x_{34} x_{36} -x_{22} x_{25} x_{29} x_{30} x_{33} x_{34} x_{36} -1/2x_{22} x_{23} x_{29} x_{30} x_{33} x_{34} x_{36} +x_{22}^{2}x_{29} x_{30} x_{33} x_{34} x_{36} -x_{21} x_{22} x_{29} x_{30} x_{33} x_{34} x_{36} +x_{21}^{2}x_{29} x_{30} x_{33} x_{34} x_{36} +x_{24} x_{25} x_{28} x_{30} x_{33} x_{34} x_{36} -x_{22} x_{25} x_{28} x_{30} x_{33} x_{34} x_{36} -1/2x_{22} x_{24} x_{28} x_{30} x_{33} x_{34} x_{36} +3/2x_{22}^{2}x_{28} x_{30} x_{33} x_{34} x_{36} -2x_{21} x_{22} x_{28} x_{30} x_{33} x_{34} x_{36} +2x_{21}^{2}x_{28} x_{30} x_{33} x_{34} x_{36} -x_{24} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} -x_{23} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} +4x_{22} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} -2x_{21} x_{25} x_{27} x_{30} x_{33} x_{34} x_{36} +x_{23} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36} -x_{22} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36} +1/2x_{21} x_{24} x_{27} x_{30} x_{33} x_{34} x_{36} -3/2x_{22} x_{23} x_{27} x_{30} x_{33} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{30} x_{33} x_{34} x_{36} +1/2x_{21} x_{22} x_{27} x_{30} x_{33} x_{34} x_{36} -x_{21}^{2}x_{27} x_{30} x_{33} x_{34} x_{36} -2x_{22} x_{25} x_{26} x_{30} x_{33} x_{34} x_{36} +4x_{21} x_{25} x_{26} x_{30} x_{33} x_{34} x_{36} +1/2x_{22} x_{24} x_{26} x_{30} x_{33} x_{34} x_{36} -x_{21} x_{24} x_{26} x_{30} x_{33} x_{34} x_{36} +x_{22} x_{23} x_{26} x_{30} x_{33} x_{34} x_{36} -2x_{21} x_{23} x_{26} x_{30} x_{33} x_{34} x_{36} -1/2x_{22}^{2}x_{26} x_{30} x_{33} x_{34} x_{36} +x_{21} x_{22} x_{26} x_{30} x_{33} x_{34} x_{36} -x_{25}^{2}x_{28} x_{29} x_{33} x_{34} x_{36} +x_{22} x_{25} x_{28} x_{29} x_{33} x_{34} x_{36} -x_{22}^{2}x_{28} x_{29} x_{33} x_{34} x_{36} +3/2x_{21} x_{22} x_{28} x_{29} x_{33} x_{34} x_{36} -3/2x_{21}^{2}x_{28} x_{29} x_{33} x_{34} x_{36} +x_{25}^{2}x_{27} x_{29} x_{33} x_{34} x_{36} -1/2x_{23} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36} -x_{22} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36} +1/2x_{21} x_{25} x_{27} x_{29} x_{33} x_{34} x_{36} +x_{22} x_{23} x_{27} x_{29} x_{33} x_{34} x_{36} -3/4x_{21} x_{23} x_{27} x_{29} x_{33} x_{34} x_{36} -1/2x_{21} x_{22} x_{27} x_{29} x_{33} x_{34} x_{36} +x_{21}^{2}x_{27} x_{29} x_{33} x_{34} x_{36} +1/2x_{22} x_{25} x_{26} x_{29} x_{33} x_{34} x_{36} -x_{21} x_{25} x_{26} x_{29} x_{33} x_{34} x_{36} -3/4x_{22} x_{23} x_{26} x_{29} x_{33} x_{34} x_{36} +3/2x_{21} x_{23} x_{26} x_{29} x_{33} x_{34} x_{36} +1/2x_{22}^{2}x_{26} x_{29} x_{33} x_{34} x_{36} -x_{21} x_{22} x_{26} x_{29} x_{33} x_{34} x_{36} +x_{25}^{2}x_{27} x_{28} x_{33} x_{34} x_{36} -1/2x_{24} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36} -3/2x_{22} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36} +x_{21} x_{25} x_{27} x_{28} x_{33} x_{34} x_{36} +x_{22} x_{24} x_{27} x_{28} x_{33} x_{34} x_{36} -3/4x_{21} x_{24} x_{27} x_{28} x_{33} x_{34} x_{36} -1/4x_{21} x_{22} x_{27} x_{28} x_{33} x_{34} x_{36} +1/2x_{21}^{2}x_{27} x_{28} x_{33} x_{34} x_{36} +x_{22} x_{25} x_{26} x_{28} x_{33} x_{34} x_{36} -2x_{21} x_{25} x_{26} x_{28} x_{33} x_{34} x_{36} -3/4x_{22} x_{24} x_{26} x_{28} x_{33} x_{34} x_{36} +3/2x_{21} x_{24} x_{26} x_{28} x_{33} x_{34} x_{36} +1/4x_{22}^{2}x_{26} x_{28} x_{33} x_{34} x_{36} -1/2x_{21} x_{22} x_{26} x_{28} x_{33} x_{34} x_{36} -2x_{25}^{2}x_{27}^{2}x_{33} x_{34} x_{36} +x_{24} x_{25} x_{27}^{2}x_{33} x_{34} x_{36} +3/2x_{23} x_{25} x_{27}^{2}x_{33} x_{34} x_{36} -1/2x_{21} x_{25} x_{27}^{2}x_{33} x_{34} x_{36} -x_{23} x_{24} x_{27}^{2}x_{33} x_{34} x_{36} +1/2x_{21} x_{24} x_{27}^{2}x_{33} x_{34} x_{36} +1/4x_{21} x_{23} x_{27}^{2}x_{33} x_{34} x_{36} -3/4x_{21}^{2}x_{27}^{2}x_{33} x_{34} x_{36} +2x_{25}^{2}x_{26} x_{27} x_{33} x_{34} x_{36} -x_{24} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} -2x_{23} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} +1/2x_{22} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} +x_{21} x_{25} x_{26} x_{27} x_{33} x_{34} x_{36} +3/2x_{23} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36} -1/2x_{22} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36} -x_{21} x_{24} x_{26} x_{27} x_{33} x_{34} x_{36} -1/4x_{22} x_{23} x_{26} x_{27} x_{33} x_{34} x_{36} -1/2x_{21} x_{23} x_{26} x_{27} x_{33} x_{34} x_{36} +3/2x_{21} x_{22} x_{26} x_{27} x_{33} x_{34} x_{36} -2x_{25}^{2}x_{26}^{2}x_{33} x_{34} x_{36} +x_{24} x_{25} x_{26}^{2}x_{33} x_{34} x_{36} +2x_{23} x_{25} x_{26}^{2}x_{33} x_{34} x_{36} -x_{22} x_{25} x_{26}^{2}x_{33} x_{34} x_{36} -3/2x_{23} x_{24} x_{26}^{2}x_{33} x_{34} x_{36} +x_{22} x_{24} x_{26}^{2}x_{33} x_{34} x_{36} +1/2x_{22} x_{23} x_{26}^{2}x_{33} x_{34} x_{36} -3/4x_{22}^{2}x_{26}^{2}x_{33} x_{34} x_{36} +x_{23} x_{24} x_{30}^{2}x_{32} x_{34} x_{36} -2x_{22} x_{24} x_{30}^{2}x_{32} x_{34} x_{36} +x_{21} x_{24} x_{30}^{2}x_{32} x_{34} x_{36} -x_{23}^{2}x_{30}^{2}x_{32} x_{34} x_{36} +2x_{22} x_{23} x_{30}^{2}x_{32} x_{34} x_{36} -x_{21} x_{23} x_{30}^{2}x_{32} x_{34} x_{36} -x_{23} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36} +2x_{22} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36} -x_{21} x_{25} x_{29} x_{30} x_{32} x_{34} x_{36} +1/2x_{23}^{2}x_{29} x_{30} x_{32} x_{34} x_{36} -x_{22} x_{23} x_{29} x_{30} x_{32} x_{34} x_{36} +1/2x_{21} x_{23} x_{29} x_{30} x_{32} x_{34} x_{36} -x_{24} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{23} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} -2x_{22} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} +x_{21} x_{25} x_{28} x_{30} x_{32} x_{34} x_{36} -1/2x_{23} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{22} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36} -x_{21} x_{24} x_{28} x_{30} x_{32} x_{34} x_{36} -3/2x_{22} x_{23} x_{28} x_{30} x_{32} x_{34} x_{36} +x_{21} x_{23} x_{28} x_{30} x_{32} x_{34} x_{36} +1/2x_{21} x_{22} x_{28} x_{30} x_{32} x_{34} x_{36} -x_{21}^{2}x_{28} x_{30} x_{32} x_{34} x_{36} +2x_{24} x_{25} x_{27} x_{30} x_{32} x_{34} x_{36} -2x_{23} x_{25} x_{27} x_{30} x_{32} x_{34} x_{36} -x_{23} x_{24} x_{27} x_{30} x_{32} x_{34} x_{36} +3/2x_{23}^{2}x_{27} x_{30} x_{32} x_{34} x_{36} -x_{21} x_{23} x_{27} x_{30} x_{32} x_{34} x_{36} +3/2x_{21}^{2}x_{27} x_{30} x_{32} x_{34} x_{36} -x_{24} x_{25} x_{26} x_{30} x_{32} x_{34} x_{36} +x_{23} x_{25} x_{26} x_{30} x_{32} x_{34} x_{36} +1/2x_{23} x_{24} x_{26} x_{30} x_{32} x_{34} x_{36} -x_{23}^{2}x_{26} x_{30} x_{32} x_{34} x_{36} +1/2x_{22} x_{23} x_{26} x_{30} x_{32} x_{34} x_{36} +x_{21} x_{23} x_{26} x_{30} x_{32} x_{34} x_{36} -3/2x_{21} x_{22} x_{26} x_{30} x_{32} x_{34} x_{36} +x_{25}^{2}x_{28} x_{29} x_{32} x_{34} x_{36} -1/2x_{23} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36} -x_{22} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36} +1/2x_{21} x_{25} x_{28} x_{29} x_{32} x_{34} x_{36} +x_{22} x_{23} x_{28} x_{29} x_{32} x_{34} x_{36} -3/4x_{21} x_{23} x_{28} x_{29} x_{32} x_{34} x_{36} -1/2x_{21} x_{22} x_{28} x_{29} x_{32} x_{34} x_{36} +x_{21}^{2}x_{28} x_{29} x_{32} x_{34} x_{36} -2x_{25}^{2}x_{27} x_{29} x_{32} x_{34} x_{36} +2x_{23} x_{25} x_{27} x_{29} x_{32} x_{34} x_{36} -x_{23}^{2}x_{27} x_{29} x_{32} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{32} x_{34} x_{36} -3/2x_{21}^{2}x_{27} x_{29} x_{32} x_{34} x_{36} +x_{25}^{2}x_{26} x_{29} x_{32} x_{34} x_{36} -x_{23} x_{25} x_{26} x_{29} x_{32} x_{34} x_{36} +3/4x_{23}^{2}x_{26} x_{29} x_{32} x_{34} x_{36} -1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{34} x_{36} -x_{21} x_{23} x_{26} x_{29} x_{32} x_{34} x_{36} +3/2x_{21} x_{22} x_{26} x_{29} x_{32} x_{34} x_{36} -x_{25}^{2}x_{28}^{2}x_{32} x_{34} x_{36} +1/2x_{24} x_{25} x_{28}^{2}x_{32} x_{34} x_{36} +3/2x_{22} x_{25} x_{28}^{2}x_{32} x_{34} x_{36} -x_{21} x_{25} x_{28}^{2}x_{32} x_{34} x_{36} -x_{22} x_{24} x_{28}^{2}x_{32} x_{34} x_{36} +3/4x_{21} x_{24} x_{28}^{2}x_{32} x_{34} x_{36} +1/4x_{21} x_{22} x_{28}^{2}x_{32} x_{34} x_{36} -1/2x_{21}^{2}x_{28}^{2}x_{32} x_{34} x_{36} +2x_{25}^{2}x_{27} x_{28} x_{32} x_{34} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36} -3/2x_{23} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36} +1/2x_{21} x_{25} x_{27} x_{28} x_{32} x_{34} x_{36} +x_{23} x_{24} x_{27} x_{28} x_{32} x_{34} x_{36} -1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{34} x_{36} -1/4x_{21} x_{23} x_{27} x_{28} x_{32} x_{34} x_{36} +3/4x_{21}^{2}x_{27} x_{28} x_{32} x_{34} x_{36} -x_{25}^{2}x_{26} x_{28} x_{32} x_{34} x_{36} +1/2x_{24} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{23} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} -x_{22} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{21} x_{25} x_{26} x_{28} x_{32} x_{34} x_{36} -3/4x_{23} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36} -x_{21} x_{24} x_{26} x_{28} x_{32} x_{34} x_{36} -1/4x_{22} x_{23} x_{26} x_{28} x_{32} x_{34} x_{36} +x_{21} x_{23} x_{26} x_{28} x_{32} x_{34} x_{36} -3/4x_{21} x_{22} x_{26} x_{28} x_{32} x_{34} x_{36} +1/2x_{23} x_{25} x_{26} x_{27} x_{32} x_{34} x_{36} -3/2x_{21} x_{25} x_{26} x_{27} x_{32} x_{34} x_{36} -1/2x_{23} x_{24} x_{26} x_{27} x_{32} x_{34} x_{36} +3/2x_{21} x_{24} x_{26} x_{27} x_{32} x_{34} x_{36} +1/4x_{23}^{2}x_{26} x_{27} x_{32} x_{34} x_{36} -3/4x_{21} x_{23} x_{26} x_{27} x_{32} x_{34} x_{36} -x_{23} x_{25} x_{26}^{2}x_{32} x_{34} x_{36} +3/2x_{22} x_{25} x_{26}^{2}x_{32} x_{34} x_{36} +x_{23} x_{24} x_{26}^{2}x_{32} x_{34} x_{36} -3/2x_{22} x_{24} x_{26}^{2}x_{32} x_{34} x_{36} -1/2x_{23}^{2}x_{26}^{2}x_{32} x_{34} x_{36} +3/4x_{22} x_{23} x_{26}^{2}x_{32} x_{34} x_{36} +x_{22} x_{24} x_{30}^{2}x_{31} x_{34} x_{36} -2x_{21} x_{24} x_{30}^{2}x_{31} x_{34} x_{36} -x_{22} x_{23} x_{30}^{2}x_{31} x_{34} x_{36} +2x_{21} x_{23} x_{30}^{2}x_{31} x_{34} x_{36} -x_{22} x_{25} x_{29} x_{30} x_{31} x_{34} x_{36} +2x_{21} x_{25} x_{29} x_{30} x_{31} x_{34} x_{36} +1/2x_{22} x_{23} x_{29} x_{30} x_{31} x_{34} x_{36} -x_{21} x_{23} x_{29} x_{30} x_{31} x_{34} x_{36} +x_{22} x_{25} x_{28} x_{30} x_{31} x_{34} x_{36} -2x_{21} x_{25} x_{28} x_{30} x_{31} x_{34} x_{36} -x_{22} x_{24} x_{28} x_{30} x_{31} x_{34} x_{36} +2x_{21} x_{24} x_{28} x_{30} x_{31} x_{34} x_{36} +x_{22} x_{23} x_{28} x_{30} x_{31} x_{34} x_{36} -2x_{21} x_{23} x_{28} x_{30} x_{31} x_{34} x_{36} -1/2x_{22}^{2}x_{28} x_{30} x_{31} x_{34} x_{36} +x_{21} x_{22} x_{28} x_{30} x_{31} x_{34} x_{36} -x_{24} x_{25} x_{27} x_{30} x_{31} x_{34} x_{36} +x_{23} x_{25} x_{27} x_{30} x_{31} x_{34} x_{36} +1/2x_{23} x_{24} x_{27} x_{30} x_{31} x_{34} x_{36} -x_{23}^{2}x_{27} x_{30} x_{31} x_{34} x_{36} +1/2x_{22} x_{23} x_{27} x_{30} x_{31} x_{34} x_{36} +x_{21} x_{23} x_{27} x_{30} x_{31} x_{34} x_{36} -3/2x_{21} x_{22} x_{27} x_{30} x_{31} x_{34} x_{36} +2x_{24} x_{25} x_{26} x_{30} x_{31} x_{34} x_{36} -2x_{23} x_{25} x_{26} x_{30} x_{31} x_{34} x_{36} -x_{23} x_{24} x_{26} x_{30} x_{31} x_{34} x_{36} +2x_{23}^{2}x_{26} x_{30} x_{31} x_{34} x_{36} -2x_{22} x_{23} x_{26} x_{30} x_{31} x_{34} x_{36} +3/2x_{22}^{2}x_{26} x_{30} x_{31} x_{34} x_{36} +1/2x_{22} x_{25} x_{28} x_{29} x_{31} x_{34} x_{36} -x_{21} x_{25} x_{28} x_{29} x_{31} x_{34} x_{36} -3/4x_{22} x_{23} x_{28} x_{29} x_{31} x_{34} x_{36} +3/2x_{21} x_{23} x_{28} x_{29} x_{31} x_{34} x_{36} +1/2x_{22}^{2}x_{28} x_{29} x_{31} x_{34} x_{36} -x_{21} x_{22} x_{28} x_{29} x_{31} x_{34} x_{36} +x_{25}^{2}x_{27} x_{29} x_{31} x_{34} x_{36} -x_{23} x_{25} x_{27} x_{29} x_{31} x_{34} x_{36} +3/4x_{23}^{2}x_{27} x_{29} x_{31} x_{34} x_{36} -1/2x_{22} x_{23} x_{27} x_{29} x_{31} x_{34} x_{36} -x_{21} x_{23} x_{27} x_{29} x_{31} x_{34} x_{36} +3/2x_{21} x_{22} x_{27} x_{29} x_{31} x_{34} x_{36} -2x_{25}^{2}x_{26} x_{29} x_{31} x_{34} x_{36} +2x_{23} x_{25} x_{26} x_{29} x_{31} x_{34} x_{36} -3/2x_{23}^{2}x_{26} x_{29} x_{31} x_{34} x_{36} +2x_{22} x_{23} x_{26} x_{29} x_{31} x_{34} x_{36} -3/2x_{22}^{2}x_{26} x_{29} x_{31} x_{34} x_{36} -x_{22} x_{25} x_{28}^{2}x_{31} x_{34} x_{36} +2x_{21} x_{25} x_{28}^{2}x_{31} x_{34} x_{36} +3/4x_{22} x_{24} x_{28}^{2}x_{31} x_{34} x_{36} -3/2x_{21} x_{24} x_{28}^{2}x_{31} x_{34} x_{36} -1/4x_{22}^{2}x_{28}^{2}x_{31} x_{34} x_{36} +1/2x_{21} x_{22} x_{28}^{2}x_{31} x_{34} x_{36} -x_{25}^{2}x_{27} x_{28} x_{31} x_{34} x_{36} +1/2x_{24} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} +x_{23} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} +1/2x_{22} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} -2x_{21} x_{25} x_{27} x_{28} x_{31} x_{34} x_{36} -3/4x_{23} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36} -1/2x_{22} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36} +2x_{21} x_{24} x_{27} x_{28} x_{31} x_{34} x_{36} +1/2x_{22} x_{23} x_{27} x_{28} x_{31} x_{34} x_{36} -1/2x_{21} x_{23} x_{27} x_{28} x_{31} x_{34} x_{36} -3/4x_{21} x_{22} x_{27} x_{28} x_{31} x_{34} x_{36} +2x_{25}^{2}x_{26} x_{28} x_{31} x_{34} x_{36} -x_{24} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36} -2x_{23} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36} +x_{22} x_{25} x_{26} x_{28} x_{31} x_{34} x_{36} +3/2x_{23} x_{24} x_{26} x_{28} x_{31} x_{34} x_{36} -x_{22} x_{24} x_{26} x_{28} x_{31} x_{34} x_{36} -1/2x_{22} x_{23} x_{26} x_{28} x_{31} x_{34} x_{36} +3/4x_{22}^{2}x_{26} x_{28} x_{31} x_{34} x_{36} -1/2x_{23} x_{25} x_{27}^{2}x_{31} x_{34} x_{36} +3/2x_{21} x_{25} x_{27}^{2}x_{31} x_{34} x_{36} +1/2x_{23} x_{24} x_{27}^{2}x_{31} x_{34} x_{36} -3/2x_{21} x_{24} x_{27}^{2}x_{31} x_{34} x_{36} -1/4x_{23}^{2}x_{27}^{2}x_{31} x_{34} x_{36} +3/4x_{21} x_{23} x_{27}^{2}x_{31} x_{34} x_{36} +x_{23} x_{25} x_{26} x_{27} x_{31} x_{34} x_{36} -3/2x_{22} x_{25} x_{26} x_{27} x_{31} x_{34} x_{36} -x_{23} x_{24} x_{26} x_{27} x_{31} x_{34} x_{36} +3/2x_{22} x_{24} x_{26} x_{27} x_{31} x_{34} x_{36} +1/2x_{23}^{2}x_{26} x_{27} x_{31} x_{34} x_{36} -3/4x_{22} x_{23} x_{26} x_{27} x_{31} x_{34} x_{36} +1/2x_{24}^{2}x_{30}^{2}x_{33}^{2}x_{36} -x_{22} x_{24} x_{30}^{2}x_{33}^{2}x_{36} +3/2x_{22}^{2}x_{30}^{2}x_{33}^{2}x_{36} -2x_{21} x_{22} x_{30}^{2}x_{33}^{2}x_{36} +2x_{21}^{2}x_{30}^{2}x_{33}^{2}x_{36} -x_{24} x_{25} x_{29} x_{30} x_{33}^{2}x_{36} +x_{22} x_{25} x_{29} x_{30} x_{33}^{2}x_{36} +1/2x_{22} x_{24} x_{29} x_{30} x_{33}^{2}x_{36} -3/2x_{22}^{2}x_{29} x_{30} x_{33}^{2}x_{36} +2x_{21} x_{22} x_{29} x_{30} x_{33}^{2}x_{36} -2x_{21}^{2}x_{29} x_{30} x_{33}^{2}x_{36} +x_{24} x_{25} x_{27} x_{30} x_{33}^{2}x_{36} -3x_{22} x_{25} x_{27} x_{30} x_{33}^{2}x_{36} +2x_{21} x_{25} x_{27} x_{30} x_{33}^{2}x_{36} -1/2x_{24}^{2}x_{27} x_{30} x_{33}^{2}x_{36} +3/2x_{22} x_{24} x_{27} x_{30} x_{33}^{2}x_{36} -x_{21} x_{24} x_{27} x_{30} x_{33}^{2}x_{36} +2x_{22} x_{25} x_{26} x_{30} x_{33}^{2}x_{36} -4x_{21} x_{25} x_{26} x_{30} x_{33}^{2}x_{36} -x_{22} x_{24} x_{26} x_{30} x_{33}^{2}x_{36} +2x_{21} x_{24} x_{26} x_{30} x_{33}^{2}x_{36} +1/2x_{25}^{2}x_{29}^{2}x_{33}^{2}x_{36} -1/2x_{22} x_{25} x_{29}^{2}x_{33}^{2}x_{36} +1/2x_{22}^{2}x_{29}^{2}x_{33}^{2}x_{36} -3/4x_{21} x_{22} x_{29}^{2}x_{33}^{2}x_{36} +3/4x_{21}^{2}x_{29}^{2}x_{33}^{2}x_{36} -x_{25}^{2}x_{27} x_{29} x_{33}^{2}x_{36} +1/2x_{24} x_{25} x_{27} x_{29} x_{33}^{2}x_{36} +3/2x_{22} x_{25} x_{27} x_{29} x_{33}^{2}x_{36} -x_{21} x_{25} x_{27} x_{29} x_{33}^{2}x_{36} -x_{22} x_{24} x_{27} x_{29} x_{33}^{2}x_{36} +3/4x_{21} x_{24} x_{27} x_{29} x_{33}^{2}x_{36} +1/4x_{21} x_{22} x_{27} x_{29} x_{33}^{2}x_{36} -1/2x_{21}^{2}x_{27} x_{29} x_{33}^{2}x_{36} -x_{22} x_{25} x_{26} x_{29} x_{33}^{2}x_{36} +2x_{21} x_{25} x_{26} x_{29} x_{33}^{2}x_{36} +3/4x_{22} x_{24} x_{26} x_{29} x_{33}^{2}x_{36} -3/2x_{21} x_{24} x_{26} x_{29} x_{33}^{2}x_{36} -1/4x_{22}^{2}x_{26} x_{29} x_{33}^{2}x_{36} +1/2x_{21} x_{22} x_{26} x_{29} x_{33}^{2}x_{36} +3/2x_{25}^{2}x_{27}^{2}x_{33}^{2}x_{36} -3/2x_{24} x_{25} x_{27}^{2}x_{33}^{2}x_{36} +1/2x_{24}^{2}x_{27}^{2}x_{33}^{2}x_{36} -1/4x_{21} x_{24} x_{27}^{2}x_{33}^{2}x_{36} +1/2x_{21}^{2}x_{27}^{2}x_{33}^{2}x_{36} -2x_{25}^{2}x_{26} x_{27} x_{33}^{2}x_{36} +2x_{24} x_{25} x_{26} x_{27} x_{33}^{2}x_{36} -3/4x_{24}^{2}x_{26} x_{27} x_{33}^{2}x_{36} +1/4x_{22} x_{24} x_{26} x_{27} x_{33}^{2}x_{36} +1/2x_{21} x_{24} x_{26} x_{27} x_{33}^{2}x_{36} -x_{21} x_{22} x_{26} x_{27} x_{33}^{2}x_{36} +2x_{25}^{2}x_{26}^{2}x_{33}^{2}x_{36} -2x_{24} x_{25} x_{26}^{2}x_{33}^{2}x_{36} +3/4x_{24}^{2}x_{26}^{2}x_{33}^{2}x_{36} -1/2x_{22} x_{24} x_{26}^{2}x_{33}^{2}x_{36} +1/2x_{22}^{2}x_{26}^{2}x_{33}^{2}x_{36} -x_{24}^{2}x_{30}^{2}x_{32} x_{33} x_{36} +x_{23} x_{24} x_{30}^{2}x_{32} x_{33} x_{36} +2x_{22} x_{24} x_{30}^{2}x_{32} x_{33} x_{36} -x_{21} x_{24} x_{30}^{2}x_{32} x_{33} x_{36} -3x_{22} x_{23} x_{30}^{2}x_{32} x_{33} x_{36} +2x_{21} x_{23} x_{30}^{2}x_{32} x_{33} x_{36} +x_{21} x_{22} x_{30}^{2}x_{32} x_{33} x_{36} -2x_{21}^{2}x_{30}^{2}x_{32} x_{33} x_{36} +2x_{24} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{23} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} -2x_{22} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} +x_{21} x_{25} x_{29} x_{30} x_{32} x_{33} x_{36} -1/2x_{23} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{22} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36} +1/2x_{21} x_{24} x_{29} x_{30} x_{32} x_{33} x_{36} +3x_{22} x_{23} x_{29} x_{30} x_{32} x_{33} x_{36} -2x_{21} x_{23} x_{29} x_{30} x_{32} x_{33} x_{36} -x_{21} x_{22} x_{29} x_{30} x_{32} x_{33} x_{36} +2x_{21}^{2}x_{29} x_{30} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36} +3x_{22} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36} -2x_{21} x_{25} x_{28} x_{30} x_{32} x_{33} x_{36} +1/2x_{24}^{2}x_{28} x_{30} x_{32} x_{33} x_{36} -3/2x_{22} x_{24} x_{28} x_{30} x_{32} x_{33} x_{36} +x_{21} x_{24} x_{28} x_{30} x_{32} x_{33} x_{36} -2x_{24} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36} +3x_{23} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36} -x_{21} x_{25} x_{27} x_{30} x_{32} x_{33} x_{36} +x_{24}^{2}x_{27} x_{30} x_{32} x_{33} x_{36} -3/2x_{23} x_{24} x_{27} x_{30} x_{32} x_{33} x_{36} +1/2x_{21} x_{24} x_{27} x_{30} x_{32} x_{33} x_{36} +x_{24} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} -2x_{23} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} -x_{22} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} +4x_{21} x_{25} x_{26} x_{30} x_{32} x_{33} x_{36} -1/2x_{24}^{2}x_{26} x_{30} x_{32} x_{33} x_{36} +x_{23} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36} +1/2x_{22} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36} -2x_{21} x_{24} x_{26} x_{30} x_{32} x_{33} x_{36} -x_{25}^{2}x_{29}^{2}x_{32} x_{33} x_{36} +1/2x_{23} x_{25} x_{29}^{2}x_{32} x_{33} x_{36} +x_{22} x_{25} x_{29}^{2}x_{32} x_{33} x_{36} -1/2x_{21} x_{25} x_{29}^{2}x_{32} x_{33} x_{36} -x_{22} x_{23} x_{29}^{2}x_{32} x_{33} x_{36} +3/4x_{21} x_{23} x_{29}^{2}x_{32} x_{33} x_{36} +1/2x_{21} x_{22} x_{29}^{2}x_{32} x_{33} x_{36} -x_{21}^{2}x_{29}^{2}x_{32} x_{33} x_{36} +x_{25}^{2}x_{28} x_{29} x_{32} x_{33} x_{36} -1/2x_{24} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36} -3/2x_{22} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36} +x_{21} x_{25} x_{28} x_{29} x_{32} x_{33} x_{36} +x_{22} x_{24} x_{28} x_{29} x_{32} x_{33} x_{36} -3/4x_{21} x_{24} x_{28} x_{29} x_{32} x_{33} x_{36} -1/4x_{21} x_{22} x_{28} x_{29} x_{32} x_{33} x_{36} +1/2x_{21}^{2}x_{28} x_{29} x_{32} x_{33} x_{36} +2x_{25}^{2}x_{27} x_{29} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36} -3/2x_{23} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36} +1/2x_{21} x_{25} x_{27} x_{29} x_{32} x_{33} x_{36} +x_{23} x_{24} x_{27} x_{29} x_{32} x_{33} x_{36} -1/2x_{21} x_{24} x_{27} x_{29} x_{32} x_{33} x_{36} -1/4x_{21} x_{23} x_{27} x_{29} x_{32} x_{33} x_{36} +3/4x_{21}^{2}x_{27} x_{29} x_{32} x_{33} x_{36} -x_{25}^{2}x_{26} x_{29} x_{32} x_{33} x_{36} +1/2x_{24} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} +x_{23} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} +1/2x_{22} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} -2x_{21} x_{25} x_{26} x_{29} x_{32} x_{33} x_{36} -3/4x_{23} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36} -1/2x_{22} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36} +2x_{21} x_{24} x_{26} x_{29} x_{32} x_{33} x_{36} +1/2x_{22} x_{23} x_{26} x_{29} x_{32} x_{33} x_{36} -1/2x_{21} x_{23} x_{26} x_{29} x_{32} x_{33} x_{36} -3/4x_{21} x_{22} x_{26} x_{29} x_{32} x_{33} x_{36} -3x_{25}^{2}x_{27} x_{28} x_{32} x_{33} x_{36} +3x_{24} x_{25} x_{27} x_{28} x_{32} x_{33} x_{36} -x_{24}^{2}x_{27} x_{28} x_{32} x_{33} x_{36} +1/2x_{21} x_{24} x_{27} x_{28} x_{32} x_{33} x_{36} -x_{21}^{2}x_{27} x_{28} x_{32} x_{33} x_{36} +2x_{25}^{2}x_{26} x_{28} x_{32} x_{33} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{32} x_{33} x_{36} +3/4x_{24}^{2}x_{26} x_{28} x_{32} x_{33} x_{36} -1/4x_{22} x_{24} x_{26} x_{28} x_{32} x_{33} x_{36} -1/2x_{21} x_{24} x_{26} x_{28} x_{32} x_{33} x_{36} +x_{21} x_{22} x_{26} x_{28} x_{32} x_{33} x_{36} +x_{25}^{2}x_{26} x_{27} x_{32} x_{33} x_{36} -x_{24} x_{25} x_{26} x_{27} x_{32} x_{33} x_{36} +1/2x_{24}^{2}x_{26} x_{27} x_{32} x_{33} x_{36} -1/4x_{23} x_{24} x_{26} x_{27} x_{32} x_{33} x_{36} -3/4x_{21} x_{24} x_{26} x_{27} x_{32} x_{33} x_{36} +x_{21} x_{23} x_{26} x_{27} x_{32} x_{33} x_{36} -2x_{25}^{2}x_{26}^{2}x_{32} x_{33} x_{36} +2x_{24} x_{25} x_{26}^{2}x_{32} x_{33} x_{36} -x_{24}^{2}x_{26}^{2}x_{32} x_{33} x_{36} +1/2x_{23} x_{24} x_{26}^{2}x_{32} x_{33} x_{36} +3/4x_{22} x_{24} x_{26}^{2}x_{32} x_{33} x_{36} -x_{22} x_{23} x_{26}^{2}x_{32} x_{33} x_{36} -x_{22} x_{24} x_{30}^{2}x_{31} x_{33} x_{36} +2x_{21} x_{24} x_{30}^{2}x_{31} x_{33} x_{36} +2x_{22} x_{23} x_{30}^{2}x_{31} x_{33} x_{36} -4x_{21} x_{23} x_{30}^{2}x_{31} x_{33} x_{36} -x_{22}^{2}x_{30}^{2}x_{31} x_{33} x_{36} +2x_{21} x_{22} x_{30}^{2}x_{31} x_{33} x_{36} +x_{22} x_{25} x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{25} x_{29} x_{30} x_{31} x_{33} x_{36} +1/2x_{22} x_{24} x_{29} x_{30} x_{31} x_{33} x_{36} -x_{21} x_{24} x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{22} x_{23} x_{29} x_{30} x_{31} x_{33} x_{36} +4x_{21} x_{23} x_{29} x_{30} x_{31} x_{33} x_{36} +x_{22}^{2}x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{22} x_{29} x_{30} x_{31} x_{33} x_{36} -2x_{22} x_{25} x_{28} x_{30} x_{31} x_{33} x_{36} +4x_{21} x_{25} x_{28} x_{30} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{28} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{24} x_{28} x_{30} x_{31} x_{33} x_{36} +x_{24} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} -2x_{23} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} +2x_{22} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} -2x_{21} x_{25} x_{27} x_{30} x_{31} x_{33} x_{36} -1/2x_{24}^{2}x_{27} x_{30} x_{31} x_{33} x_{36} +x_{23} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36} -x_{22} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36} +x_{21} x_{24} x_{27} x_{30} x_{31} x_{33} x_{36} -2x_{24} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36} +4x_{23} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36} -2x_{22} x_{25} x_{26} x_{30} x_{31} x_{33} x_{36} +x_{24}^{2}x_{26} x_{30} x_{31} x_{33} x_{36} -2x_{23} x_{24} x_{26} x_{30} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{26} x_{30} x_{31} x_{33} x_{36} -1/2x_{22} x_{25} x_{29}^{2}x_{31} x_{33} x_{36} +x_{21} x_{25} x_{29}^{2}x_{31} x_{33} x_{36} +3/4x_{22} x_{23} x_{29}^{2}x_{31} x_{33} x_{36} -3/2x_{21} x_{23} x_{29}^{2}x_{31} x_{33} x_{36} -1/2x_{22}^{2}x_{29}^{2}x_{31} x_{33} x_{36} +x_{21} x_{22} x_{29}^{2}x_{31} x_{33} x_{36} +x_{22} x_{25} x_{28} x_{29} x_{31} x_{33} x_{36} -2x_{21} x_{25} x_{28} x_{29} x_{31} x_{33} x_{36} -3/4x_{22} x_{24} x_{28} x_{29} x_{31} x_{33} x_{36} +3/2x_{21} x_{24} x_{28} x_{29} x_{31} x_{33} x_{36} +1/4x_{22}^{2}x_{28} x_{29} x_{31} x_{33} x_{36} -1/2x_{21} x_{22} x_{28} x_{29} x_{31} x_{33} x_{36} -x_{25}^{2}x_{27} x_{29} x_{31} x_{33} x_{36} +1/2x_{24} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{23} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} -x_{22} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{21} x_{25} x_{27} x_{29} x_{31} x_{33} x_{36} -3/4x_{23} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36} -x_{21} x_{24} x_{27} x_{29} x_{31} x_{33} x_{36} -1/4x_{22} x_{23} x_{27} x_{29} x_{31} x_{33} x_{36} +x_{21} x_{23} x_{27} x_{29} x_{31} x_{33} x_{36} -3/4x_{21} x_{22} x_{27} x_{29} x_{31} x_{33} x_{36} +2x_{25}^{2}x_{26} x_{29} x_{31} x_{33} x_{36} -x_{24} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36} -2x_{23} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36} +x_{22} x_{25} x_{26} x_{29} x_{31} x_{33} x_{36} +3/2x_{23} x_{24} x_{26} x_{29} x_{31} x_{33} x_{36} -x_{22} x_{24} x_{26} x_{29} x_{31} x_{33} x_{36} -1/2x_{22} x_{23} x_{26} x_{29} x_{31} x_{33} x_{36} +3/4x_{22}^{2}x_{26} x_{29} x_{31} x_{33} x_{36} +2x_{25}^{2}x_{27} x_{28} x_{31} x_{33} x_{36} -2x_{24} x_{25} x_{27} x_{28} x_{31} x_{33} x_{36} +3/4x_{24}^{2}x_{27} x_{28} x_{31} x_{33} x_{36} -1/4x_{22} x_{24} x_{27} x_{28} x_{31} x_{33} x_{36} -1/2x_{21} x_{24} x_{27} x_{28} x_{31} x_{33} x_{36} +x_{21} x_{22} x_{27} x_{28} x_{31} x_{33} x_{36} -4x_{25}^{2}x_{26} x_{28} x_{31} x_{33} x_{36} +4x_{24} x_{25} x_{26} x_{28} x_{31} x_{33} x_{36} -3/2x_{24}^{2}x_{26} x_{28} x_{31} x_{33} x_{36} +x_{22} x_{24} x_{26} x_{28} x_{31} x_{33} x_{36} -x_{22}^{2}x_{26} x_{28} x_{31} x_{33} x_{36} -x_{25}^{2}x_{27}^{2}x_{31} x_{33} x_{36} +x_{24} x_{25} x_{27}^{2}x_{31} x_{33} x_{36} -1/2x_{24}^{2}x_{27}^{2}x_{31} x_{33} x_{36} +1/4x_{23} x_{24} x_{27}^{2}x_{31} x_{33} x_{36} +3/4x_{21} x_{24} x_{27}^{2}x_{31} x_{33} x_{36} -x_{21} x_{23} x_{27}^{2}x_{31} x_{33} x_{36} +2x_{25}^{2}x_{26} x_{27} x_{31} x_{33} x_{36} -2x_{24} x_{25} x_{26} x_{27} x_{31} x_{33} x_{36} +x_{24}^{2}x_{26} x_{27} x_{31} x_{33} x_{36} -1/2x_{23} x_{24} x_{26} x_{27} x_{31} x_{33} x_{36} -3/4x_{22} x_{24} x_{26} x_{27} x_{31} x_{33} x_{36} +x_{22} x_{23} x_{26} x_{27} x_{31} x_{33} x_{36} +x_{24}^{2}x_{30}^{2}x_{32}^{2}x_{36} -2x_{23} x_{24} x_{30}^{2}x_{32}^{2}x_{36} +3/2x_{23}^{2}x_{30}^{2}x_{32}^{2}x_{36} -x_{21} x_{23} x_{30}^{2}x_{32}^{2}x_{36} +3/2x_{21}^{2}x_{30}^{2}x_{32}^{2}x_{36} -2x_{24} x_{25} x_{29} x_{30} x_{32}^{2}x_{36} +2x_{23} x_{25} x_{29} x_{30} x_{32}^{2}x_{36} +x_{23} x_{24} x_{29} x_{30} x_{32}^{2}x_{36} -3/2x_{23}^{2}x_{29} x_{30} x_{32}^{2}x_{36} +x_{21} x_{23} x_{29} x_{30} x_{32}^{2}x_{36} -3/2x_{21}^{2}x_{29} x_{30} x_{32}^{2}x_{36} +2x_{24} x_{25} x_{28} x_{30} x_{32}^{2}x_{36} -3x_{23} x_{25} x_{28} x_{30} x_{32}^{2}x_{36} +x_{21} x_{25} x_{28} x_{30} x_{32}^{2}x_{36} -x_{24}^{2}x_{28} x_{30} x_{32}^{2}x_{36} +3/2x_{23} x_{24} x_{28} x_{30} x_{32}^{2}x_{36} -1/2x_{21} x_{24} x_{28} x_{30} x_{32}^{2}x_{36} +x_{23} x_{25} x_{26} x_{30} x_{32}^{2}x_{36} -3x_{21} x_{25} x_{26} x_{30} x_{32}^{2}x_{36} -1/2x_{23} x_{24} x_{26} x_{30} x_{32}^{2}x_{36} +3/2x_{21} x_{24} x_{26} x_{30} x_{32}^{2}x_{36} +x_{25}^{2}x_{29}^{2}x_{32}^{2}x_{36} -x_{23} x_{25} x_{29}^{2}x_{32}^{2}x_{36} +1/2x_{23}^{2}x_{29}^{2}x_{32}^{2}x_{36} -1/2x_{21} x_{23} x_{29}^{2}x_{32}^{2}x_{36} +3/4x_{21}^{2}x_{29}^{2}x_{32}^{2}x_{36} -2x_{25}^{2}x_{28} x_{29} x_{32}^{2}x_{36} +x_{24} x_{25} x_{28} x_{29} x_{32}^{2}x_{36} +3/2x_{23} x_{25} x_{28} x_{29} x_{32}^{2}x_{36} -1/2x_{21} x_{25} x_{28} x_{29} x_{32}^{2}x_{36} -x_{23} x_{24} x_{28} x_{29} x_{32}^{2}x_{36} +1/2x_{21} x_{24} x_{28} x_{29} x_{32}^{2}x_{36} +1/4x_{21} x_{23} x_{28} x_{29} x_{32}^{2}x_{36} -3/4x_{21}^{2}x_{28} x_{29} x_{32}^{2}x_{36} -1/2x_{23} x_{25} x_{26} x_{29} x_{32}^{2}x_{36} +3/2x_{21} x_{25} x_{26} x_{29} x_{32}^{2}x_{36} +1/2x_{23} x_{24} x_{26} x_{29} x_{32}^{2}x_{36} -3/2x_{21} x_{24} x_{26} x_{29} x_{32}^{2}x_{36} -1/4x_{23}^{2}x_{26} x_{29} x_{32}^{2}x_{36} +3/4x_{21} x_{23} x_{26} x_{29} x_{32}^{2}x_{36} +3/2x_{25}^{2}x_{28}^{2}x_{32}^{2}x_{36} -3/2x_{24} x_{25} x_{28}^{2}x_{32}^{2}x_{36} +1/2x_{24}^{2}x_{28}^{2}x_{32}^{2}x_{36} -1/4x_{21} x_{24} x_{28}^{2}x_{32}^{2}x_{36} +1/2x_{21}^{2}x_{28}^{2}x_{32}^{2}x_{36} -x_{25}^{2}x_{26} x_{28} x_{32}^{2}x_{36} +x_{24} x_{25} x_{26} x_{28} x_{32}^{2}x_{36} -1/2x_{24}^{2}x_{26} x_{28} x_{32}^{2}x_{36} +1/4x_{23} x_{24} x_{26} x_{28} x_{32}^{2}x_{36} +3/4x_{21} x_{24} x_{26} x_{28} x_{32}^{2}x_{36} -x_{21} x_{23} x_{26} x_{28} x_{32}^{2}x_{36} +3/2x_{25}^{2}x_{26}^{2}x_{32}^{2}x_{36} -3/2x_{24} x_{25} x_{26}^{2}x_{32}^{2}x_{36} +3/4x_{24}^{2}x_{26}^{2}x_{32}^{2}x_{36} -3/4x_{23} x_{24} x_{26}^{2}x_{32}^{2}x_{36} +1/2x_{23}^{2}x_{26}^{2}x_{32}^{2}x_{36} -x_{24}^{2}x_{30}^{2}x_{31} x_{32} x_{36} +2x_{23} x_{24} x_{30}^{2}x_{31} x_{32} x_{36} -2x_{23}^{2}x_{30}^{2}x_{31} x_{32} x_{36} +x_{22} x_{23} x_{30}^{2}x_{31} x_{32} x_{36} +2x_{21} x_{23} x_{30}^{2}x_{31} x_{32} x_{36} -3x_{21} x_{22} x_{30}^{2}x_{31} x_{32} x_{36} +2x_{24} x_{25} x_{29} x_{30} x_{31} x_{32} x_{36} -2x_{23} x_{25} x_{29} x_{30} x_{31} x_{32} x_{36} -x_{23} x_{24} x_{29} x_{30} x_{31} x_{32} x_{36} +2x_{23}^{2}x_{29} x_{30} x_{31} x_{32} x_{36} -x_{22} x_{23} x_{29} x_{30} x_{31} x_{32} x_{36} -2x_{21} x_{23} x_{29} x_{30} x_{31} x_{32} x_{36} +3x_{21} x_{22} x_{29} x_{30} x_{31} x_{32} x_{36} -2x_{24} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} +4x_{23} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} -x_{22} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} -2x_{21} x_{25} x_{28} x_{30} x_{31} x_{32} x_{36} +x_{24}^{2}x_{28} x_{30} x_{31} x_{32} x_{36} -2x_{23} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36} +1/2x_{22} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36} +x_{21} x_{24} x_{28} x_{30} x_{31} x_{32} x_{36} -x_{23} x_{25} x_{27} x_{30} x_{31} x_{32} x_{36} +3x_{21} x_{25} x_{27} x_{30} x_{31} x_{32} x_{36} +1/2x_{23} x_{24} x_{27} x_{30} x_{31} x_{32} x_{36} -3/2x_{21} x_{24} x_{27} x_{30} x_{31} x_{32} x_{36} -2x_{23} x_{25} x_{26} x_{30} x_{31} x_{32} x_{36} +3x_{22} x_{25} x_{26} x_{30} x_{31} x_{32} x_{36} +x_{23} x_{24} x_{26} x_{30} x_{31} x_{32} x_{36} -3/2x_{22} x_{24} x_{26} x_{30} x_{31} x_{32} x_{36} -x_{25}^{2}x_{29}^{2}x_{31} x_{32} x_{36} +x_{23} x_{25} x_{29}^{2}x_{31} x_{32} x_{36} -3/4x_{23}^{2}x_{29}^{2}x_{31} x_{32} x_{36} +1/2x_{22} x_{23} x_{29}^{2}x_{31} x_{32} x_{36} +x_{21} x_{23} x_{29}^{2}x_{31} x_{32} x_{36} -3/2x_{21} x_{22} x_{29}^{2}x_{31} x_{32} x_{36} +2x_{25}^{2}x_{28} x_{29} x_{31} x_{32} x_{36} -x_{24} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} -2x_{23} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} +1/2x_{22} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} +x_{21} x_{25} x_{28} x_{29} x_{31} x_{32} x_{36} +3/2x_{23} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36} -1/2x_{22} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36} -x_{21} x_{24} x_{28} x_{29} x_{31} x_{32} x_{36} -1/4x_{22} x_{23} x_{28} x_{29} x_{31} x_{32} x_{36} -1/2x_{21} x_{23} x_{28} x_{29} x_{31} x_{32} x_{36} +3/2x_{21} x_{22} x_{28} x_{29} x_{31} x_{32} x_{36} +1/2x_{23} x_{25} x_{27} x_{29} x_{31} x_{32} x_{36} -3/2x_{21} x_{25} x_{27} x_{29} x_{31} x_{32} x_{36} -1/2x_{23} x_{24} x_{27} x_{29} x_{31} x_{32} x_{36} +3/2x_{21} x_{24} x_{27} x_{29} x_{31} x_{32} x_{36} +1/4x_{23}^{2}x_{27} x_{29} x_{31} x_{32} x_{36} -3/4x_{21} x_{23} x_{27} x_{29} x_{31} x_{32} x_{36} +x_{23} x_{25} x_{26} x_{29} x_{31} x_{32} x_{36} -3/2x_{22} x_{25} x_{26} x_{29} x_{31} x_{32} x_{36} -x_{23} x_{24} x_{26} x_{29} x_{31} x_{32} x_{36} +3/2x_{22} x_{24} x_{26} x_{29} x_{31} x_{32} x_{36} +1/2x_{23}^{2}x_{26} x_{29} x_{31} x_{32} x_{36} -3/4x_{22} x_{23} x_{26} x_{29} x_{31} x_{32} x_{36} -2x_{25}^{2}x_{28}^{2}x_{31} x_{32} x_{36} +2x_{24} x_{25} x_{28}^{2}x_{31} x_{32} x_{36} -3/4x_{24}^{2}x_{28}^{2}x_{31} x_{32} x_{36} +1/4x_{22} x_{24} x_{28}^{2}x_{31} x_{32} x_{36} +1/2x_{21} x_{24} x_{28}^{2}x_{31} x_{32} x_{36} -x_{21} x_{22} x_{28}^{2}x_{31} x_{32} x_{36} +x_{25}^{2}x_{27} x_{28} x_{31} x_{32} x_{36} -x_{24} x_{25} x_{27} x_{28} x_{31} x_{32} x_{36} +1/2x_{24}^{2}x_{27} x_{28} x_{31} x_{32} x_{36} -1/4x_{23} x_{24} x_{27} x_{28} x_{31} x_{32} x_{36} -3/4x_{21} x_{24} x_{27} x_{28} x_{31} x_{32} x_{36} +x_{21} x_{23} x_{27} x_{28} x_{31} x_{32} x_{36} +2x_{25}^{2}x_{26} x_{28} x_{31} x_{32} x_{36} -2x_{24} x_{25} x_{26} x_{28} x_{31} x_{32} x_{36} +x_{24}^{2}x_{26} x_{28} x_{31} x_{32} x_{36} -1/2x_{23} x_{24} x_{26} x_{28} x_{31} x_{32} x_{36} -3/4x_{22} x_{24} x_{26} x_{28} x_{31} x_{32} x_{36} +x_{22} x_{23} x_{26} x_{28} x_{31} x_{32} x_{36} -3x_{25}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +3x_{24} x_{25} x_{26} x_{27} x_{31} x_{32} x_{36} -3/2x_{24}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +3/2x_{23} x_{24} x_{26} x_{27} x_{31} x_{32} x_{36} -x_{23}^{2}x_{26} x_{27} x_{31} x_{32} x_{36} +x_{24}^{2}x_{30}^{2}x_{31}^{2}x_{36} -2x_{23} x_{24} x_{30}^{2}x_{31}^{2}x_{36} +2x_{23}^{2}x_{30}^{2}x_{31}^{2}x_{36} -2x_{22} x_{23} x_{30}^{2}x_{31}^{2}x_{36} +3/2x_{22}^{2}x_{30}^{2}x_{31}^{2}x_{36} -2x_{24} x_{25} x_{29} x_{30} x_{31}^{2}x_{36} +2x_{23} x_{25} x_{29} x_{30} x_{31}^{2}x_{36} +x_{23} x_{24} x_{29} x_{30} x_{31}^{2}x_{36} -2x_{23}^{2}x_{29} x_{30} x_{31}^{2}x_{36} +2x_{22} x_{23} x_{29} x_{30} x_{31}^{2}x_{36} -3/2x_{22}^{2}x_{29} x_{30} x_{31}^{2}x_{36} +2x_{24} x_{25} x_{28} x_{30} x_{31}^{2}x_{36} -4x_{23} x_{25} x_{28} x_{30} x_{31}^{2}x_{36} +2x_{22} x_{25} x_{28} x_{30} x_{31}^{2}x_{36} -x_{24}^{2}x_{28} x_{30} x_{31}^{2}x_{36} +2x_{23} x_{24} x_{28} x_{30} x_{31}^{2}x_{36} -x_{22} x_{24} x_{28} x_{30} x_{31}^{2}x_{36} +2x_{23} x_{25} x_{27} x_{30} x_{31}^{2}x_{36} -3x_{22} x_{25} x_{27} x_{30} x_{31}^{2}x_{36} -x_{23} x_{24} x_{27} x_{30} x_{31}^{2}x_{36} +3/2x_{22} x_{24} x_{27} x_{30} x_{31}^{2}x_{36} +x_{25}^{2}x_{29}^{2}x_{31}^{2}x_{36} -x_{23} x_{25} x_{29}^{2}x_{31}^{2}x_{36} +3/4x_{23}^{2}x_{29}^{2}x_{31}^{2}x_{36} -x_{22} x_{23} x_{29}^{2}x_{31}^{2}x_{36} +3/4x_{22}^{2}x_{29}^{2}x_{31}^{2}x_{36} -2x_{25}^{2}x_{28} x_{29} x_{31}^{2}x_{36} +x_{24} x_{25} x_{28} x_{29} x_{31}^{2}x_{36} +2x_{23} x_{25} x_{28} x_{29} x_{31}^{2}x_{36} -x_{22} x_{25} x_{28} x_{29} x_{31}^{2}x_{36} -3/2x_{23} x_{24} x_{28} x_{29} x_{31}^{2}x_{36} +x_{22} x_{24} x_{28} x_{29} x_{31}^{2}x_{36} +1/2x_{22} x_{23} x_{28} x_{29} x_{31}^{2}x_{36} -3/4x_{22}^{2}x_{28} x_{29} x_{31}^{2}x_{36} -x_{23} x_{25} x_{27} x_{29} x_{31}^{2}x_{36} +3/2x_{22} x_{25} x_{27} x_{29} x_{31}^{2}x_{36} +x_{23} x_{24} x_{27} x_{29} x_{31}^{2}x_{36} -3/2x_{22} x_{24} x_{27} x_{29} x_{31}^{2}x_{36} -1/2x_{23}^{2}x_{27} x_{29} x_{31}^{2}x_{36} +3/4x_{22} x_{23} x_{27} x_{29} x_{31}^{2}x_{36} +2x_{25}^{2}x_{28}^{2}x_{31}^{2}x_{36} -2x_{24} x_{25} x_{28}^{2}x_{31}^{2}x_{36} +3/4x_{24}^{2}x_{28}^{2}x_{31}^{2}x_{36} -1/2x_{22} x_{24} x_{28}^{2}x_{31}^{2}x_{36} +1/2x_{22}^{2}x_{28}^{2}x_{31}^{2}x_{36} -2x_{25}^{2}x_{27} x_{28} x_{31}^{2}x_{36} +2x_{24} x_{25} x_{27} x_{28} x_{31}^{2}x_{36} -x_{24}^{2}x_{27} x_{28} x_{31}^{2}x_{36} +1/2x_{23} x_{24} x_{27} x_{28} x_{31}^{2}x_{36} +3/4x_{22} x_{24} x_{27} x_{28} x_{31}^{2}x_{36} -x_{22} x_{23} x_{27} x_{28} x_{31}^{2}x_{36} +3/2x_{25}^{2}x_{27}^{2}x_{31}^{2}x_{36} -3/2x_{24} x_{25} x_{27}^{2}x_{31}^{2}x_{36} +3/4x_{24}^{2}x_{27}^{2}x_{31}^{2}x_{36} -3/4x_{23} x_{24} x_{27}^{2}x_{31}^{2}x_{36} +1/2x_{23}^{2}x_{27}^{2}x_{31}^{2}x_{36} -1, x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +2x_{7} x_{17} +2x_{6} x_{16} +2x_{5} x_{15} +x_{4} x_{14} +2x_{3} x_{13} +2x_{2} x_{12} +x_{1} x_{11} -4, x_{7} x_{15} +x_{6} x_{13} +x_{4} x_{12} +x_{2} x_{11} , x_{9} x_{15} +x_{8} x_{13} +x_{6} x_{12} +x_{3} x_{11} , x_{10} x_{15} +x_{9} x_{13} +x_{7} x_{12} +x_{5} x_{11} , x_{5} x_{17} +x_{3} x_{16} +x_{2} x_{14} +x_{1} x_{12} , x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +2x_{7} x_{17} +2x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14} +x_{3} x_{13} +x_{2} x_{12} -3, x_{9} x_{17} +x_{8} x_{16} +x_{6} x_{14} +x_{3} x_{12} , x_{10} x_{17} +x_{9} x_{16} +x_{7} x_{14} +x_{5} x_{12} , x_{5} x_{19} +x_{3} x_{18} +x_{2} x_{16} +x_{1} x_{13} , x_{7} x_{19} +x_{6} x_{18} +x_{4} x_{16} +x_{2} x_{13} , x_{10} x_{20} +2x_{9} x_{19} +x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{3} x_{13} -2, x_{10} x_{19} +x_{9} x_{18} +x_{7} x_{16} +x_{5} x_{13} , x_{5} x_{20} +x_{3} x_{19} +x_{2} x_{17} +x_{1} x_{15} , x_{7} x_{20} +x_{6} x_{19} +x_{4} x_{17} +x_{2} x_{15} , x_{9} x_{20} +x_{8} x_{19} +x_{6} x_{17} +x_{3} x_{15} , x_{10} x_{20} +x_{9} x_{19} +x_{7} x_{17} +x_{5} x_{15} -1, x_{1} x_{24} -x_{1} x_{23} , x_{2} x_{24} -x_{2} x_{22} , x_{3} x_{24} -x_{3} x_{23} +x_{3} x_{22} -x_{3} x_{21} , x_{4} x_{23} -x_{4} x_{22} , x_{5} x_{24} -x_{5} x_{23} +x_{5} x_{21} , x_{6} x_{23} -x_{6} x_{21} , x_{7} x_{23} -x_{7} x_{22} +x_{7} x_{21} , x_{8} x_{22} -x_{8} x_{21} , x_{9} x_{22} , x_{10} x_{21} , x_{11} x_{24} -x_{11} x_{23} , x_{12} x_{24} -x_{12} x_{22} , x_{13} x_{24} -x_{13} x_{23} +x_{13} x_{22} -x_{13} x_{21} , x_{14} x_{23} -x_{14} x_{22} , x_{15} x_{24} -x_{15} x_{23} +x_{15} x_{21} , x_{16} x_{23} -x_{16} x_{21} , x_{17} x_{23} -x_{17} x_{22} +x_{17} x_{21} , x_{18} x_{22} -x_{18} x_{21} , x_{19} x_{22} , x_{20} x_{21} , x_{1} x_{29} -x_{1} x_{28} , x_{2} x_{29} -x_{2} x_{27} , x_{3} x_{29} -x_{3} x_{28} +x_{3} x_{27} -x_{3} x_{26} , x_{4} x_{28} -x_{4} x_{27} , x_{5} x_{29} -x_{5} x_{28} +x_{5} x_{26} , x_{6} x_{28} -x_{6} x_{26} , x_{7} x_{28} -x_{7} x_{27} +x_{7} x_{26} , x_{8} x_{27} -x_{8} x_{26} , x_{9} x_{27} , x_{10} x_{26} , x_{11} x_{29} -x_{11} x_{28} , x_{12} x_{29} -x_{12} x_{27} , x_{13} x_{29} -x_{13} x_{28} +x_{13} x_{27} -x_{13} x_{26} , x_{14} x_{28} -x_{14} x_{27} , x_{15} x_{29} -x_{15} x_{28} +x_{15} x_{26} , x_{16} x_{28} -x_{16} x_{26} , x_{17} x_{28} -x_{17} x_{27} +x_{17} x_{26} , x_{18} x_{27} -x_{18} x_{26} , x_{19} x_{27} , x_{20} x_{26} , x_{1} x_{34} -x_{1} x_{33} , x_{2} x_{34} -x_{2} x_{32} , x_{3} x_{34} -x_{3} x_{33} +x_{3} x_{32} -x_{3} x_{31} , x_{4} x_{33} -x_{4} x_{32} , x_{5} x_{34} -x_{5} x_{33} +x_{5} x_{31} , x_{6} x_{33} -x_{6} x_{31} , x_{7} x_{33} -x_{7} x_{32} +x_{7} x_{31} , x_{8} x_{32} -x_{8} x_{31} , x_{9} x_{32} , x_{10} x_{31} , x_{11} x_{34} -x_{11} x_{33} , x_{12} x_{34} -x_{12} x_{32} , x_{13} x_{34} -x_{13} x_{33} +x_{13} x_{32} -x_{13} x_{31} , x_{14} x_{33} -x_{14} x_{32} , x_{15} x_{34} -x_{15} x_{33} +x_{15} x_{31} , x_{16} x_{33} -x_{16} x_{31} , x_{17} x_{33} -x_{17} x_{32} +x_{17} x_{31} , x_{18} x_{32} -x_{18} x_{31} , x_{19} x_{32} , x_{20} x_{31} )